[Homologie de Rabinowitz-Floer et homologie symplectique]
The first two authors have recently defined Rabinowitz Floer homology groups associated to a separating exact embedding of a contact manifold into a symplectic manifold . These depend only on the bounded component of . We construct a long exact sequence in which symplectic cohomology of maps to symplectic homology of , which in turn maps to Rabinowitz Floer homology , which then maps to symplectic cohomology of . We compute , where is the unit cosphere bundle of a closed manifold . As an application, we prove that the image of a separating exact contact embedding of cannot be displaced away from itself by a Hamiltonian isotopy, provided and the embedding induces an injection on .
Étant donné un plongement exact et séparant d’une variété de contact dans une variété symplectique , les deux premiers auteurs ont défini des groupes d’homologie dits de Rabinowitz Floer . Ceux-ci dépendent uniquement de la composante bornée de . Nous construisons une suite exacte longue dans laquelle la cohomologie symplectique de est envoyée vers l’homologie symplectique de , qui à son tour est envoyée vers l’homologie de Rabinowitz Floer , qui finalement est envoyée vers la cohomologie symplectique de . Nous calculons pour le fibré cotangent unitaire d’une variété compacte sans bord . Nous démontrons que l’image d’un plongement exact et séparant de ne peut pas être disjointe d’elle-même par une isotopie hamiltonienne, à condition que le plongement induise une injection sur le groupe fondamental et .
Keywords: symplectic homology, Rabinowitz Floer homology, contact embeddings, free loop space
Mots-clés : homologie symplectique, homologie de Rabinowitz Floer, plongements de contact, espaces de lacets libres
@article{ASENS_2010_4_43_6_957_0,
author = {Cieliebak, Kai and Frauenfelder, Urs and Oancea, Alexandru},
title = {Rabinowitz {Floer} homology and symplectic homology},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {957--1015},
year = {2010},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {Ser. 4, 43},
number = {6},
doi = {10.24033/asens.2137},
mrnumber = {2778453},
zbl = {1213.53105},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.2137/}
}
TY - JOUR AU - Cieliebak, Kai AU - Frauenfelder, Urs AU - Oancea, Alexandru TI - Rabinowitz Floer homology and symplectic homology JO - Annales scientifiques de l'École Normale Supérieure PY - 2010 SP - 957 EP - 1015 VL - 43 IS - 6 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2137/ DO - 10.24033/asens.2137 LA - en ID - ASENS_2010_4_43_6_957_0 ER -
%0 Journal Article %A Cieliebak, Kai %A Frauenfelder, Urs %A Oancea, Alexandru %T Rabinowitz Floer homology and symplectic homology %J Annales scientifiques de l'École Normale Supérieure %D 2010 %P 957-1015 %V 43 %N 6 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2137/ %R 10.24033/asens.2137 %G en %F ASENS_2010_4_43_6_957_0
Cieliebak, Kai; Frauenfelder, Urs; Oancea, Alexandru. Rabinowitz Floer homology and symplectic homology. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 6, pp. 957-1015. doi: 10.24033/asens.2137
[1] & , On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006), 254-316. | Zbl | MR
[2] , Lagrangian non-intersections, Geom. Funct. Anal. 16 (2006), 279-326. | Zbl | MR
[3] & , Lagrangian embeddings into subcritical Stein manifolds, Israel J. Math. 127 (2002), 221-244. | Zbl | MR
[4] , , , & , Compactness results in symplectic field theory, Geom. Topol. 7 (2003), 799-888. | Zbl | MR
[5] & , An exact sequence for contact- and symplectic homology, Invent. Math. 175 (2009), 611-680. | Zbl | MR
[6] & , Symplectic homology, autonomous Hamiltonians, and Morse-Bott moduli spaces, Duke Math. J. 146 (2009), 71-174. | Zbl | MR
[7] , Topology and geometry, Graduate Texts in Math. 139, Springer, 1993. | Zbl | MR
[8] , Handle attaching in symplectic homology and the chord conjecture, J. Eur. Math. Soc. (JEMS) 4 (2002), 115-142. | Zbl | MR
[9] , , & , Applications of symplectic homology. II. Stability of the action spectrum, Math. Z. 223 (1996), 27-45. | Zbl | MR
[10] & , A Floer homology for exact contact embeddings, Pacific J. Math. 239 (2009), 251-316. | Zbl | MR
[11] & , Morse homology on noncompact manifolds, preprint arXiv:0911.1805. | Zbl
[12] , & , Symplectic topology of Mañé's critical values, Geometry & Topology 14 (2010), 1765-1870. | Zbl | MR
[13] & , Foundations of algebraic topology, Princeton Univ. Press, 1952. | Zbl | MR
[14] & , Floer homology and Novikov rings, in The Floer memorial volume, Progr. Math. 133, Birkhäuser, 1995, 483-524. | Zbl | MR
[15] , Lefschetz fibrations and symplectic homology, Geom. Topol. 13 (2009), 1877-1944. | Zbl | MR
[16] , A survey of Floer homology for manifolds with contact type boundary or symplectic homology, in Symplectic geometry and Floer homology. A survey of the Floer homology for manifolds with contact type boundary or symplectic homology, Ensaios Mat. 7, Soc. Brasil. Mat., 2004, 51-91. | Zbl | MR
[17] , The Künneth formula in Floer homology for manifolds with restricted contact type boundary, Math. Ann. 334 (2006), 65-89. | Zbl | MR
[18] , Topological quantum field theory structure on symplectic cohomology, preprint arXiv:1003.1781. | MR
[19] & , The Maslov index for paths, Topology 32 (1993), 827-844. | Zbl | MR
[20] , Lectures on Floer homology, in Symplectic geometry and topology (Park City, UT, 1997), IAS/Park City Math. Ser. 7, Amer. Math. Soc., 1999, 143-229. | Zbl | MR
[21] & , Floer homology and the heat flow, Geom. Funct. Anal. 16 (2006), 1050-1138. | Zbl | MR
[22] & , Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), 1303-1360. | Zbl | MR
[23] , Applications of Hofer's geometry to Hamiltonian dynamics, Comment. Math. Helv. 81 (2006), 105-121. | Zbl | MR
[24] , Morse homology, Progress in Math. 111, Birkhäuser, 1993. | Zbl | MR
[25] , A biased view of symplectic cohomology, in Current developments in mathematics, 2006, Int. Press, Somerville, MA, 2008, 211-253. | Zbl | MR
[26] , Some properties of holomorphic curves in almost complex manifolds, in Holomorphic curves in symplectic geometry, Progr. Math. 117, Birkhäuser, 1994, 165-189. | MR
[27] & , The homology theory of the closed geodesic problem, J. Differential Geometry 11 (1976), 633-644. | Zbl | MR
[28] , A new obstruction to embedding Lagrangian tori, Invent. Math. 100 (1990), 301-320. | Zbl | MR
[29] , Functors and computations in Floer homology with applications. I, Geom. Funct. Anal. 9 (1999), 985-1033. | Zbl | MR
[30] , Functors and computations in Floer homology with applications. II, preprint Université Paris-Sud no 98-15, 1998. | Zbl
Cité par Sources :







