@article{ASENS_2003_4_36_2_213_0,
author = {Abdenur, Flavio},
title = {Generic robustness of spectral decompositions},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {213--224},
year = {2003},
publisher = {Elsevier},
volume = {Ser. 4, 36},
number = {2},
doi = {10.1016/S0012-9593(03)00008-9},
mrnumber = {1980311},
zbl = {1027.37010},
language = {en},
url = {https://www.numdam.org/articles/10.1016/S0012-9593(03)00008-9/}
}
TY - JOUR AU - Abdenur, Flavio TI - Generic robustness of spectral decompositions JO - Annales scientifiques de l'École Normale Supérieure PY - 2003 SP - 213 EP - 224 VL - 36 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S0012-9593(03)00008-9/ DO - 10.1016/S0012-9593(03)00008-9 LA - en ID - ASENS_2003_4_36_2_213_0 ER -
%0 Journal Article %A Abdenur, Flavio %T Generic robustness of spectral decompositions %J Annales scientifiques de l'École Normale Supérieure %D 2003 %P 213-224 %V 36 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/S0012-9593(03)00008-9/ %R 10.1016/S0012-9593(03)00008-9 %G en %F ASENS_2003_4_36_2_213_0
Abdenur, Flavio. Generic robustness of spectral decompositions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 2, pp. 213-224. doi: 10.1016/S0012-9593(03)00008-9
[1] Abdenur F., Attractors of generic diffeomorphisms are persistent, preprint IMPA, 2001. | MR
[2] , , Persistence of transitive diffeomorphisms, Ann. Math. 143 (1995) 367-396. | Zbl | MR
[3] , , Connexions hétéroclines et généricité d'une infinité de puits ou de sources, Ann. Scient. Éc. Norm. Sup. Paris 32 (1999) 135-150. | Zbl | MR | Numdam
[4] Bonatti Ch., Diaz L.J., On maximal transitive sets of generic diffeomorphisms, preprint PUC-Rio, 2001.
[5] Bonatti Ch., Diaz L.J., Pujals E., A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. Math., to appear. | Zbl | MR
[6] Bonatti Ch., Diaz L.J., Pujals E., Rocha J., Robustly transitive sets and heterodimensional cycles, Astérisque, to appear. | Zbl | MR | Numdam
[7] , , SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000) 157-193. | Zbl | MR
[8] Carballo C.M., Morales C.A., Homoclinic classes and finitude of attractors for vector fields on n-manifolds, preprint, 2001. | MR
[9] Carballo C.M., Morales C.A., Pacifico M.J., Homoclinic classes for generic C1 vector fields, Ergodic Theory Dynam. Systems, to appear. | Zbl | MR
[10] , , , Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999) 1-43. | Zbl | MR
[11] , Necessary conditions for stability of diffeomorphisms, Trans. AMS 158 (1971) 301-308. | Zbl | MR
[12] , Diffeomorphisms in I1(M) satisfy Axiom A, Ergodic Theory Dynam. Systems 12 (1992) 233-253. | Zbl | MR
[13] , Connecting invariant manifolds and the solution of the C1 stability and Ω-stability conjectures for flows, Ann. Math. 145 (1997) 81-137. | Zbl
[14] , General Topology, New York, Springer, 1955. | Zbl | MR
[15] , Contributions to the C1-stability conjecture, Topology 17 (1978) 386-396. | Zbl | MR
[16] , An ergodic closing lemma, Ann. Math. 116 (1982) 503-540. | Zbl | MR
[17] , A global view of dynamics and a conjecture on the denseness of finitude of atttractors, Astérisque 261 (2000) 335-347. | Zbl | MR | Numdam
[18] , An improved closing lemma and a general density theorem, Amer. J. Math. 89 (1967) 1010-1021. | Zbl | MR
[19] , , Homoclinic tangencies and hyperbolicity for surface diffeomorphisms: a conjecture of Palis, Ann. Math. 151 (2000) 961-1023. | Zbl | MR
[20] , , Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Univ. Press, 1993. | Zbl | MR
[21] , Global Stability of Dynamical Systems, Springer-Verlag, New York, 1986. | Zbl | MR
Cité par Sources :





