Hwang, Jun-Muk 1 ; Mok, Ngaiming 
@article{ASENS_2002_4_35_2_173_0,
author = {Hwang, Jun-Muk and Mok, Ngaiming},
title = {Deformation rigidity of the rational homogeneous space associated to a long simple root},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {173--184},
year = {2002},
publisher = {Elsevier},
volume = {Ser. 4, 35},
number = {2},
doi = {10.1016/s0012-9593(02)01087-x},
mrnumber = {1914930},
zbl = {1008.32012},
language = {en},
url = {https://www.numdam.org/articles/10.1016/s0012-9593(02)01087-x/}
}
TY - JOUR AU - Hwang, Jun-Muk AU - Mok, Ngaiming TI - Deformation rigidity of the rational homogeneous space associated to a long simple root JO - Annales scientifiques de l'École Normale Supérieure PY - 2002 SP - 173 EP - 184 VL - 35 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/s0012-9593(02)01087-x/ DO - 10.1016/s0012-9593(02)01087-x LA - en ID - ASENS_2002_4_35_2_173_0 ER -
%0 Journal Article %A Hwang, Jun-Muk %A Mok, Ngaiming %T Deformation rigidity of the rational homogeneous space associated to a long simple root %J Annales scientifiques de l'École Normale Supérieure %D 2002 %P 173-184 %V 35 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/s0012-9593(02)01087-x/ %R 10.1016/s0012-9593(02)01087-x %G en %F ASENS_2002_4_35_2_173_0
Hwang, Jun-Muk; Mok, Ngaiming. Deformation rigidity of the rational homogeneous space associated to a long simple root. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 35 (2002) no. 2, pp. 173-184. doi: 10.1016/s0012-9593(02)01087-x
[1] , Groupes et Algèbres de Lie, Ch. 7-8, Hermann, Paris, 1975. | MR
[2] , Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957) 121-138. | Zbl | MR
[3] , Rigidity of homogeneous contact manifolds under Fano deformation, J. Reine Angew. Math. 486 (1997) 153-163. | Zbl | MR
[4] , Stability of tangent bundles of low dimensional Fano manifolds with Picard number 1, Math. Ann. 312 (1998) 599-606. | Zbl | MR
[5] , , Rigidity of irreducible Hermitian symmetric spaces of the compact type under Kähler deformation, Invent. Math. 131 (1998) 393-418. | Zbl | MR
[6] , , Holomorphic maps from rational homogeneous spaces of Picard number 1 onto projective manifolds, Invent. Math. 136 (1999) 209-231. | Zbl | MR
[7] , , Varieties of minimal rational tangents on uniruled projective manifolds, in: , (Eds.), Several Complex Variables, MSRI Publications, 37, Cambridge University Press, 2000, pp. 351-389. | Zbl | MR
[8] , Introduction to Lie Algebras and Representation Theory, Grad. Texts Math., 9, Springer, 1972. | Zbl | MR
[9] , Infinite Dimensional Lie Algebras, Cambridge University Press, 1990. | Zbl | MR
[10] , On stability of compact submanifolds of complex manifolds, Amer. J. Math. 85 (1963) 79-94. | Zbl | MR
[11] , Rational Curves on Algebraic Varieties, Ergebnisse Math. 3 Folge, 32, Springer-Verlag, 1996. | Zbl | MR
[12] , Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds, Series in Pure Math., 6, World Scientific, 1989. | Zbl | MR
[13] , Geometric structures on filtered manifolds, Hokkaido Math. J. 22 (1993) 263-347. | Zbl | MR
[14] , Complex Semisimple Lie Algebras, Springer-Verlag, 1987. | Zbl | MR
[15] , On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J. 8 (1979) 23-84. | Zbl | MR
[16] , Differential systems associated with simple graded Lie algebras, in: Progress in Differential Geometry, Adv. Study Pure Math., 22, 1993, pp. 413-494. | Zbl | MR
Cité par Sources :






