We give a proof of an integral formula of Berndtsson which is related to the inversion of Fourier-Laplace transforms of -closed -forms in the complement of a compact convex set in .
@article{AMBP_2004__11_1_41_0,
author = {Hatziafratis, Telemachos},
title = {On an integral formula of {Berndtsson} related to the inversion of the {Fourier-Laplace} transform of $\bar{\partial }$-closed $(n,n-1)$-forms},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {41--46},
year = {2004},
publisher = {Annales math\'ematiques Blaise Pascal},
volume = {11},
number = {1},
doi = {10.5802/ambp.184},
zbl = {1085.32002},
mrnumber = {2077237},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ambp.184/}
}
TY - JOUR
AU - Hatziafratis, Telemachos
TI - On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\bar{\partial }$-closed $(n,n-1)$-forms
JO - Annales mathématiques Blaise Pascal
PY - 2004
SP - 41
EP - 46
VL - 11
IS - 1
PB - Annales mathématiques Blaise Pascal
UR - https://www.numdam.org/articles/10.5802/ambp.184/
DO - 10.5802/ambp.184
LA - en
ID - AMBP_2004__11_1_41_0
ER -
%0 Journal Article
%A Hatziafratis, Telemachos
%T On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\bar{\partial }$-closed $(n,n-1)$-forms
%J Annales mathématiques Blaise Pascal
%D 2004
%P 41-46
%V 11
%N 1
%I Annales mathématiques Blaise Pascal
%U https://www.numdam.org/articles/10.5802/ambp.184/
%R 10.5802/ambp.184
%G en
%F AMBP_2004__11_1_41_0
Hatziafratis, Telemachos. On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\bar{\partial }$-closed $(n,n-1)$-forms. Annales mathématiques Blaise Pascal, Tome 11 (2004) no. 1, pp. 41-46. doi: 10.5802/ambp.184
[1] Weighted integral formulas, Several Complex Variables (Proc. Mittag-Leffler Inst., 1987-88), Princeton Univ. Press (1993), pp. 160-187 | Zbl | MR
[2] Note on the Fourier-Laplace transform of -cohomology classes, Zeitschrift für Analysis und ihre Anwendungen, Volume 17 (1998), pp. 907-915 | Zbl | MR
Cité par Sources :





