@article{AIHPC_2009__26_6_2373_0,
author = {Gu, Qilong and Li, Tatsien},
title = {Exact {Boundary} {Controllability} for {Quasilinear} {Wave} {Equations} in a {Planar} {Tree-Like} {Network} of {Strings}},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {2373--2384},
year = {2009},
publisher = {Elsevier},
volume = {26},
number = {6},
doi = {10.1016/j.anihpc.2009.05.002},
mrnumber = {2569899},
zbl = {1180.35326},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.05.002/}
}
TY - JOUR AU - Gu, Qilong AU - Li, Tatsien TI - Exact Boundary Controllability for Quasilinear Wave Equations in a Planar Tree-Like Network of Strings JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2373 EP - 2384 VL - 26 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2009.05.002/ DO - 10.1016/j.anihpc.2009.05.002 LA - en ID - AIHPC_2009__26_6_2373_0 ER -
%0 Journal Article %A Gu, Qilong %A Li, Tatsien %T Exact Boundary Controllability for Quasilinear Wave Equations in a Planar Tree-Like Network of Strings %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2373-2384 %V 26 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2009.05.002/ %R 10.1016/j.anihpc.2009.05.002 %G en %F AIHPC_2009__26_6_2373_0
Gu, Qilong; Li, Tatsien. Exact Boundary Controllability for Quasilinear Wave Equations in a Planar Tree-Like Network of Strings. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2373-2384. doi: 10.1016/j.anihpc.2009.05.002
[1] , , Stabilization of Star-Shaped Networks of Strings, Differential Integral Equations 17 (2004) 1395-1410. | Zbl | MR
[2] , , Remark on Stabilization of Tree-Shaped Networks of Strings, Appl. Math. 52 (2007) 327-343. | Zbl | MR
[3] , , , Stabilization of Generic Trees of Strings, J. Dyn. Control Syst. 11 (2005) 177-193. | Zbl | MR
[4] , , Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures, Math. Appl., vol. 50, 2000. | Zbl
[5] , Boundary Control by Semilinear Evolution Equations, Russian Math. Surveys 44 (1989) 183-184. | Zbl | MR
[6] , , , Modeling, Analysis and Control of Multi-Link Structures, Systems Control Found. Appl., Birhäuser-Basel, 1994. | Zbl
[7] , , Exact Controllability of Semilinear Abstract Systems With Applications to Waves and Plates Boundary Control Problems, Appl. Math. Optim. 23 (1991) 109-154. | Zbl | MR
[8] , , Semi-Global Solution to the Mixed Initial-Boundary Value Problem for Quasilinear Hyperbolic Systems, Chinese Ann. Math. Ser. B 22 (2001) 325-336. | Zbl | MR
[9] , , Exact Boundary Controllability for Quasilinear Hyperbolic Systems, SIAM J. Control Optim. 41 (2003) 1748-1755. | Zbl
[10] , , Local Exact Boundary Controllability for a Class of Quasilinear Hyperbolic Systems, Chinese Ann. Math. Ser. B 23 (2002) 209-218. | MR
[11] , , Contrôlabilité Exacte Frontière Pour Les Équations Des Ondes Quasi Linéaires Unidimensionnelles, C. R. Acad. Sci. Paris Sér. I 337 (2003) 271-276. | Zbl | MR
[12] , , Exact Boundary Controllability for 1-D Quasilinear Wave Equations, SIAM J. Control Optim. 45 (2006) 1074-1083. | Zbl | MR
[13] , , Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke Univ. Math. Ser., vol. V, 1985. | Zbl
[14] , Contrôlabilité Exacte, Perturbations Et Stabilisation De Systèmes Distribués, Vol. I, Masson, 1988. | Zbl
[15] , Exact Controllability, Stabilization and Perturbations for Distributed Systems, SIAM Rev. 30 (1988) 1-68. | Zbl | MR
[16] , , Stabilization of the Wave Equation on 1-D Networks With a Delay Term in the Nodal Feedbacks, Netw. Heterog. Media 2 (2007) 425-479, (electronic). | MR
[17] , Controllability and Stabilizability Theory for Linear Partial Differential Equations, Recent Progress and Open Questions, SIAM Rev. 20 (1978) 639-739. | Zbl | MR
[18] , On the Modeling and Exact Controllability of Networks of Vibrating Strings, SIAM J. Control Optim. 30 (1992) 229-245. | Zbl | MR
[19] , Exact Controllability for the Semilinear Wave Equation, J. Math. Pures Appl. 69 (1990) 1-31. | Zbl | MR
[20] , Exact Controllability for Semilinear Wave Equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993) 109-129. | Zbl | MR | Numdam
[21] , Controllability of Partial Differential Equations and Its Semi-Discrete Approximation, Discrete Contin. Dyn. Syst. 8 (2002) 469-513. | Zbl | MR
Cité par Sources :






