@article{AIHPC_2009__26_1_285_0,
author = {Wang, Qian},
title = {On the {Geometry} of {Null} {Cones} in {Einstein-Vacuum} {Spacetimes}},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {285--328},
year = {2009},
publisher = {Elsevier},
volume = {26},
number = {1},
doi = {10.1016/j.anihpc.2008.03.002},
mrnumber = {2483823},
zbl = {1157.83309},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2008.03.002/}
}
TY - JOUR AU - Wang, Qian TI - On the Geometry of Null Cones in Einstein-Vacuum Spacetimes JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 285 EP - 328 VL - 26 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2008.03.002/ DO - 10.1016/j.anihpc.2008.03.002 LA - en ID - AIHPC_2009__26_1_285_0 ER -
%0 Journal Article %A Wang, Qian %T On the Geometry of Null Cones in Einstein-Vacuum Spacetimes %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 285-328 %V 26 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2008.03.002/ %R 10.1016/j.anihpc.2008.03.002 %G en %F AIHPC_2009__26_1_285_0
Wang, Qian. On the Geometry of Null Cones in Einstein-Vacuum Spacetimes. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 285-328. doi: 10.1016/j.anihpc.2008.03.002
[1] , Théorème D'existence Pour Certains Systemes D'équations Aux Dérivées Partielles Nonlinéaires, Acta Math. 88 (1952) 141-225. | Zbl | MR
[2] , , The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, vol. 41, Princeton, 1993. | Zbl | MR
[3] , , The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, 1973. | Zbl | MR
[4] , , The Evolution Problem in General Relativity, Birkhäuser, 2003. | Zbl | MR
[5] , , Space-Time Estimates for Null Forms and the Local Existence Theorem, Comm. Pure Appl. Math. 46 (1993) 1221-1268. | Zbl | MR
[6] S. Klainerman, I. Rodnianski, Unpublished notes, 2003.
[7] , , Rough Solutions to the Einstein Vacuum Equations, Ann. of Math. 161 (2005) 1143-1193. | Zbl | MR
[8] , , The Causal Structure of Microlocalized Rough Einstein Metrics, Ann. of Math. 161 (2005) 1195-1243. | Zbl | MR
[9] , , Causal Geometry of Einstein-Vacuum Spacetimes With Finite Curvature Flux, Invent. Math. 159 (3) (2005) 437-529. | Zbl | MR
[10] , , Bilinear Estimates on Curved Space-Times, J. Hyperbolic Differential Equations 2 (2005) 279-291. | MR
[11] , , Sharp Trace Theorems for Null Hypersurfaces on Einstein Metrics With Finite Curvature Flux, Geom. Funct. Anal. 16 (1) (2006) 164-229. | MR
[12] , , A Geometric Littlewood-Paley Theory, Geom. Funct. Anal. 16 (1) (2006) 126-163. | MR
[13] S. Klainerman, I. Rodnianski, On the radius of injectivity of null hypersurfaces, J. Amer. Math. Soc., to appear. | MR
[14] , , A Kirchoff-Sobolev Parametrix for the Wave Equation and Applications, J. Hyperbolic Differential Equations 4 (3) (2007) 401-433. | Zbl | MR
[15] , , On the Breakdown Criterion in General Relativity, http://arXiv:0801.1709.
[16] , The Motion of Point Particles in Curved Spacetimes, www.livingreviews.org/lrr-2004-6. | Zbl
[17] , Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathematics Studies, vol. 63, Princeton University Press, 1970. | Zbl | MR
[18] , Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, With the assistance of Timothy S. Murphy, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, Monographs in Harmonic Analysis III. | Zbl | MR
[19] , Harmonic Analysis in the Phase Plane, Lecture notes 254A, http://www.math.ucla.edu/~tao.
[20] , Interpolation Theory, Function Spaces, Differential Operators, second ed., Johann Ambrosius Barth, Heidelberg, 1995. | Zbl | MR
[21] , General Relativity, University of Chicago Press, 1984. | Zbl | MR
[22] Q. Wang, Causal geometry of Einstein-vacuum spacetimes, Ph.D thesis of Princeton University, 2006. | MR
Cité par Sources :





