Essential dynamics for Lorenz maps on the real line and the lexicographical world
Annales de l'Institut Henri Poincaré. C, Analyse non linéaire, Tome 23 (2006) no. 5, pp. 683-694
@article{AIHPC_2006__23_5_683_0,
     author = {Labarca, Rafael and Moreira, Carlos Gustavo},
     title = {Essential dynamics for {Lorenz} maps on the real line and the lexicographical world},
     journal = {Annales de l'Institut Henri Poincar\'e. C, Analyse non lin\'eaire},
     pages = {683--694},
     year = {2006},
     publisher = {Elsevier},
     volume = {23},
     number = {5},
     doi = {10.1016/j.anihpc.2005.09.001},
     mrnumber = {2259612},
     zbl = {05072657},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.09.001/}
}
TY  - JOUR
AU  - Labarca, Rafael
AU  - Moreira, Carlos Gustavo
TI  - Essential dynamics for Lorenz maps on the real line and the lexicographical world
JO  - Annales de l'Institut Henri Poincaré. C, Analyse non linéaire
PY  - 2006
SP  - 683
EP  - 694
VL  - 23
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2005.09.001/
DO  - 10.1016/j.anihpc.2005.09.001
LA  - en
ID  - AIHPC_2006__23_5_683_0
ER  - 
%0 Journal Article
%A Labarca, Rafael
%A Moreira, Carlos Gustavo
%T Essential dynamics for Lorenz maps on the real line and the lexicographical world
%J Annales de l'Institut Henri Poincaré. C, Analyse non linéaire
%D 2006
%P 683-694
%V 23
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2005.09.001/
%R 10.1016/j.anihpc.2005.09.001
%G en
%F AIHPC_2006__23_5_683_0
Labarca, Rafael; Moreira, Carlos Gustavo. Essential dynamics for Lorenz maps on the real line and the lexicographical world. Annales de l'Institut Henri Poincaré. C, Analyse non linéaire, Tome 23 (2006) no. 5, pp. 683-694. doi: 10.1016/j.anihpc.2005.09.001

[1] Brucks K.M., Misiurewicz M., Tresser Ch., Monotonicity properties of the family of trapezoidals maps, Comm. Math. Phys. 137 (1991) 1-12. | Zbl | MR

[2] Campbell D.K., Galeeva R., Tresser Ch., Uherka D.J., Piecewise linear models for the quasiperiodic transition to chaos, Chaos 6 (2) (1996) 121-154. | Zbl | MR

[3] Furstenberg H., Disjointness in ergodic theory, Math. Systems Theory 1 (1969) 1-49. | Zbl | MR

[4] Galeeva R., Martens M., Tresser Ch., Inducing, slopes and conjugacy classes, Israel J. Math. 99 (1997) 123-147. | Zbl | MR

[5] Gambaudo J.M., Tresser Ch., Dynamique régulière ou chaotique. Applications du cercle ou l'intervalle ayant une discontinuité, C. R. Acad. Soc. Paris, Sér. I 300 (10) (1985) 311-313. | Zbl | MR

[6] Glendinning P., Sparrow C., Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps, Physica D 62 (1993) 22-50. | Zbl | MR

[7] Guckenheimer J., A strange, strange attractor, in: Marsden J.E., Mccracken M. (Eds.), Hopf Bifurcations and its Applications, Springer-Verlag, Berlin, 1976, pp. 368-381. | MR

[8] Guckenheimer J., Williams R.F., Structural stability of Lorenz attractors, Publ. Math. IHES 50 (1979) 59-72. | Zbl | MR | Numdam

[9] Hubbard J.H., Sparrow C.T., The classification of topologically expansive Lorenz maps, Comm. Pure Appl. Math. XLIII (1990) 431-443. | Zbl | MR

[10] R. Labarca, C.G. Moreira, Bifurcations of the essential dynamics of Lorenz maps and the application to Lorenz like flows: contributions to the study of the contracting case, Preprint, 2003.

[11] Labarca R., Moreira C.G., Bifurcations of the essential dynamics of Lorenz maps and the application to Lorenz like flows: contributions to the study of the expanding case, Bol. Soc. Bras. Mat. (N.S.) 32 (2) (2001) 107-144. | Zbl | MR

[12] Labarca R., Moreira C.G., Bifurcation of the essential dynamics of Lorenz maps on the real line and the bifurcation scenario for the lineal family, Sci. Ser. A Math. Sci. (N.S.) 7 (2001) 13-29. | Zbl | MR

[13] Lorenz E.N., Deterministic non-periodic flow, J. Atmos. Sci. 20 (1963) 130-141.

[14] Mackay R.S., Tresser Ch., Boundary of topological chaos for bimodal maps of the interval, J. London Math. Soc. (2) 37 (1988) 164-181. | Zbl | MR

[15] Mackay R.S., Tresser Ch., Some flesh on the skeleton: the bifurcation structure of bimodals maps, Physica D 27 (1987) 412-422. | Zbl | MR

[16] De Melo W., Van Strien S., One-Dimensional Dynamics, Springer-Verlag, 1993. | Zbl | MR

[17] Misiurewicz M., Szlenk W., Entropy of piecewise monotone mappings, Studia Math. 67 (1) (1980) 45-63. | Zbl | MR

[18] C. Moreira, Geometric properties of the Markov and Lagrange spectra, Preprint IMPA, 2004.

[19] Otero-Espinar M.V., Tresser Ch., Global complexity and essential simplicity: a conjectural picture of the boundary of chaos for smooth endomorphisms of the interval, Physica D 39 (1989) 163-168. | Zbl | MR

[20] Rand D., The topological classification of Lorenz attractors, Math. Proc. Cambridge Philos. Soc. 83 (3) (1978) 451-460. | Zbl | MR

[21] Rhodes F., Kneading of Lorenz type for intervals and product spaces, Math. Proc. Cambridge Philos. Soc. 89 (1) (1981) 167-179. | Zbl | MR

[22] Ringland J., Tresser Ch., A genealogy for finite kneading sequences of bimodal maps on the interval, TAMS 347 (12) (1995) 4599-4624. | Zbl | MR

[23] Tresser Ch., Nouveaux types de transitions vers une entropie topologique positive, C. R. Acad. Paris, Sér. I 296 (1983) 729-732. | Zbl | MR

[24] Tresser Ch., Williams R.F., Splitting words and Lorenz braids, Physica D 62 (1993) 15-21. | Zbl | MR

[25] Urbański M., On Hausdorff dimension of invariant sets for expanding maps of a circle, Ergodic Theory Dynam. Systems 6 (1986) 295-309. | Zbl | MR

[26] Williams R.F., The structure of Lorenz attractors, in: Bernard P., Ratiu T. (Eds.), Turbulence Seminar Berkeley 1976/1977, Springer-Verlag, New York, 1977, pp. 94-112. | MR

Cité par Sources :