@article{AIHPC_2006__23_2_185_0,
author = {Gazzola, Filippo and Squassina, Marco},
title = {Global solutions and finite time blow up for damped semilinear wave equations},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {185--207},
year = {2006},
publisher = {Elsevier},
volume = {23},
number = {2},
doi = {10.1016/j.anihpc.2005.02.007},
mrnumber = {2201151},
zbl = {1094.35082},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.02.007/}
}
TY - JOUR AU - Gazzola, Filippo AU - Squassina, Marco TI - Global solutions and finite time blow up for damped semilinear wave equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 185 EP - 207 VL - 23 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2005.02.007/ DO - 10.1016/j.anihpc.2005.02.007 LA - en ID - AIHPC_2006__23_2_185_0 ER -
%0 Journal Article %A Gazzola, Filippo %A Squassina, Marco %T Global solutions and finite time blow up for damped semilinear wave equations %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 185-207 %V 23 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2005.02.007/ %R 10.1016/j.anihpc.2005.02.007 %G en %F AIHPC_2006__23_2_185_0
Gazzola, Filippo; Squassina, Marco. Global solutions and finite time blow up for damped semilinear wave equations. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 2, pp. 185-207. doi: 10.1016/j.anihpc.2005.02.007
[1] , , Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381. | Zbl | MR
[2] , Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst. 10 (2004) 31-52. | Zbl | MR
[3] , , Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Austral. Math. Soc. 66 (2002) 443-463. | Zbl | MR
[4] , Uniform estimates for solutions of nonlinear Klein-Gordon equations, J. Funct. Anal. 60 (1985) 36-55. | Zbl | MR
[5] , The dynamics of a nonlinear wave equation, J. Math. Anal. Appl. 279 (2003) 135-150. | Zbl | MR
[6] , Qualitative analysis of a nonlinear wave equation, Discrete Contin. Dyn. Syst. 10 (2004) 787-804. | Zbl | MR
[7] , Finite time blow-up and global solutions for some nonlinear parabolic equations, Differential Integral Equations 17 (2004) 983-1012. | Zbl | MR
[8] F. Gazzola, T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, in press. | MR
[9] , , Existence of a solution of the wave equation with nonlinear damping and source term, J. Differential Equations 109 (1994) 295-308. | Zbl | MR
[10] , , Convergence in gradient-like systems with applications to PDE, Z. Angew. Math. Phys. 43 (1992) 63-124. | Zbl | MR
[11] , Dissipative Dynamical Systems and Applications, Res. Appl. Math., vol. 17, Masson, Paris, 1991, 132 p. | Zbl | MR
[12] , , Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations 9 (1999) 95-124. | Zbl | MR
[13] , Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Anal. 27 (1996) 1165-1175. | Zbl | MR
[14] , , Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J. 26 (1996) 475-491. | Zbl | MR
[15] , , Non-stabilizing solutions of semilinear hyperbolic and elliptic equations with damping, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 1137-1153. | Zbl | MR
[16] , Instability and nonexistence of global solutions to nonlinear wave equations of the form , Trans. Amer. Math. Soc. 192 (1974) 1-21. | Zbl | MR
[17] , Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal. 5 (1974) 138-146. | Zbl | MR
[18] , , Global nonexistence theorems for quasilinear evolution equations with dissipation, Arch. Rational Mech. Anal. 137 (1997) 341-361. | Zbl | MR
[19] , , Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy, Proc. Amer. Math. Soc. 129 (2001) 793-805. | Zbl | MR
[20] , On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960) 101-123. | Zbl | MR
[21] , Remarks on blowup of solutions for nonlinear evolution equations of second order, Adv. Math. Sci. Appl. 8 (1998) 901-910. | Zbl | MR
[22] , On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci. 20 (1997) 151-177. | Zbl | MR
[23] , , On the strongly damped wave equation, Comm. Math. Phys. 253 (2004) 511-533. | Zbl | MR
[24] , , Saddle points and instability of nonlinear hyperbolic equations, Israel Math. J. 22 (1975) 273-303. | Zbl | MR
[25] , , Global nonexistence for abstract evolution equations with positive initial energy, J. Differential Equations 150 (1998) 203-214. | Zbl | MR
[26] , , Some new results on global nonexistence for abstract evolution with positive initial energy, Topol. Methods Nonlinear Anal. 10 (1997) 241-247. | Zbl | MR
[27] , On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal. 30 (1968) 148-172. | Zbl | MR
[28] , On solutions of semilinear differential equations in a Hilbert space, Math. Japon. 17 (1972) 173-193. | Zbl | MR
[29] , Global existence theorems for a class of evolution equations with dissipation, Arch. Rational Mech. Anal. 149 (1999) 155-182. | Zbl | MR
[30] , Compactness of bounded trajectories of dynamical systems in infinite-dimensional spaces, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979) 19-33. | Zbl | MR
[31] , Minimax Theorems, Progress Nonlinear Differential Equations Appl., vol. 24, Birkhäuser Boston, Boston, MA, 1996, 162 p. | Zbl | MR
Cité par Sources :





