@article{AIHPC_2004__21_1_1_0,
author = {Souganidis, P. E. and Yip, N. K.},
title = {Uniqueness of motion by mean curvature perturbed by stochastic noise},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {1--23},
year = {2004},
publisher = {Elsevier},
volume = {21},
number = {1},
doi = {10.1016/j.anihpc.2002.11.001},
mrnumber = {2037245},
zbl = {1057.35106},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2002.11.001/}
}
TY - JOUR AU - Souganidis, P. E. AU - Yip, N. K. TI - Uniqueness of motion by mean curvature perturbed by stochastic noise JO - Annales de l'I.H.P. Analyse non linéaire PY - 2004 SP - 1 EP - 23 VL - 21 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2002.11.001/ DO - 10.1016/j.anihpc.2002.11.001 LA - en ID - AIHPC_2004__21_1_1_0 ER -
%0 Journal Article %A Souganidis, P. E. %A Yip, N. K. %T Uniqueness of motion by mean curvature perturbed by stochastic noise %J Annales de l'I.H.P. Analyse non linéaire %D 2004 %P 1-23 %V 21 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2002.11.001/ %R 10.1016/j.anihpc.2002.11.001 %G en %F AIHPC_2004__21_1_1_0
Souganidis, P. E.; Yip, N. K. Uniqueness of motion by mean curvature perturbed by stochastic noise. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 1, pp. 1-23. doi: 10.1016/j.anihpc.2002.11.001
[1] , Geometric evolution problems, distance function and viscosity solutions, in: , (Eds.), Calculus of Variations and Partial Differential Equations, Springer-Verlag, 1999. | Zbl | MR
[2] , Some recent results on mean curvature flow, in: Recent Advances in Partial Differential Equations, RAM Res. Appl. Math., vol. 30, Masson, Paris, 1994. | Zbl | MR
[3] , , , A computed example of nonuniqueness of mean curvature flow in R3, Comm. PDE 20 (1995) 1937-1958. | MR
[4] S.B. Angenent, T. Ilmanen, J.J.L. Velázquez, Fattening from smooth initial data in mean curvature flow, Preprint.
[5] , , , Front propagation and phase field theory, SIAM J. Control Optim. 31 (1993) 439-469. | Zbl | MR
[6] , , A new approach to front propagation problems: theory and applications, Arch. Rational Mech. Anal. 141 (1998) 237-296. | Zbl | MR
[7] , , Two examples of fattening for the curvature flow with a driving force, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 5 (1994) 229-236. | Zbl | MR
[8] , Lev́y Processes, Cambridge University Press, 1996.
[9] , The Motion of a Surface by its Mean Curvature, Mathematical Notes, vol. 20, Princeton University Press, Princeton, NJ, 1978. | Zbl | MR
[10] , , , Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom. 33 (1991) 749-786. | Zbl | MR
[11] , , , A stochastic selection principle in case of fattening for curvature flow, Calc. Var. Partial Differential Equations 13 (2001) 405-425. | Zbl | MR
[12] , , Motion of level sets by mean curvature. I, J. Differential Geom. 33 (1991) 635-681. | Zbl | MR
[13] , , , Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992) 1097-1123. | Zbl | MR
[14] T. Funaki, Singular limits of reaction diffusion equations and random interfaces, Preprint.
[15] , Generalized motion of noncompact hypersurfaces whose growth speed depends superlinearly on the curvature tensor, Differential Integral Equations 7 (1994) 323-343. | Zbl | MR
[16] , Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Differential Geom. 38 (1993) 417-461. | Zbl | MR
[17] , , Generalized motion of noncompact hypersurfaces with velocities having arbitrary growth on the curvature tensor, Tôhuko Math. J. 47 (1995) 227-250. | Zbl | MR
[18] , A fattening principle for fronts propagating by mean curvature plus a driving force, Comm. PDE 24 (1999) 1035-1053. | Zbl | MR
[19] , , Brownian Motion and Stochastic Calculus, Springer-Verlag, 1991. | Zbl | MR
[20] , , Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 1085-1092. | Zbl | MR
[21] , , Fully nonlinear stochastic partial differential equations: non-smooth equations and applications, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 735-741. | Zbl | MR
[22] , , Fully nonlinear stochastic partial differential equations with semilinear stochastic dependence, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 617-624. | Zbl | MR
[23] , , Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 783-790. | Zbl | MR
[24] , Motion of set by the curvature of its boundary, J. Differential Equations 101 (1993) 313-372. | Zbl | MR
[25] , Front propagation: theory and applications, in: Viscosity Solutions and their Applications, Lecture Notes in Math., vol. 1660, Springer-Verlag, 1997. | Zbl | MR
[26] , II-mean curvature and weighted mean curvature, Acta Metall. Meter. 40 (1992) 1475-1485.
[27] , , , I-geometric models of crystal growth, Acta Metall. Meter. 40 (1992) 1443-1474.
[28] , Stochastic motion by mean curvature, Arch. Rational Mech. Anal. 144 (1998) 313-355. | Zbl | MR
[29] , Existence of dendritic crystal growth with stochastic perturbations, J. Nonlinear Sci. 8 (1998) 491-579. | Zbl | MR
Cité par Sources :





