@article{AIHPC_2001__18_2_179_0,
author = {Lachand-Robert, T. and Peletier, M. A.},
title = {An example of non-convex minimization and an application to {Newton's} problem of the body of least resistance},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {179--198},
year = {2001},
publisher = {Elsevier},
volume = {18},
number = {2},
mrnumber = {1808028},
zbl = {0993.49002},
language = {en},
url = {https://www.numdam.org/item/AIHPC_2001__18_2_179_0/}
}
TY - JOUR AU - Lachand-Robert, T. AU - Peletier, M. A. TI - An example of non-convex minimization and an application to Newton's problem of the body of least resistance JO - Annales de l'I.H.P. Analyse non linéaire PY - 2001 SP - 179 EP - 198 VL - 18 IS - 2 PB - Elsevier UR - https://www.numdam.org/item/AIHPC_2001__18_2_179_0/ LA - en ID - AIHPC_2001__18_2_179_0 ER -
%0 Journal Article %A Lachand-Robert, T. %A Peletier, M. A. %T An example of non-convex minimization and an application to Newton's problem of the body of least resistance %J Annales de l'I.H.P. Analyse non linéaire %D 2001 %P 179-198 %V 18 %N 2 %I Elsevier %U https://www.numdam.org/item/AIHPC_2001__18_2_179_0/ %G en %F AIHPC_2001__18_2_179_0
Lachand-Robert, T.; Peletier, M. A. An example of non-convex minimization and an application to Newton's problem of the body of least resistance. Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) no. 2, pp. 179-198. https://www.numdam.org/item/AIHPC_2001__18_2_179_0/
[1] , , , A symmetry problem in the calculus of variations, Calc. Var. Partial Differential Equations 4 (1996) 593-599. | Zbl | MR
[2] , , , Minimum problems over sets of concave functions and related questions, Math. Nachrichten 173 (1993) 71-89. | Zbl | MR
[3] , , Measure Theory and Fine Properties of Functions, Studies in Applied Mathematics, CRC Press, 1992. | Zbl | MR
[4] , A History of the Calculus of Variations from the 17th through the 19th Century, Springer-Verlag, Heidelberg, 1980. | Zbl | MR
[5] , Problemi di ottimizzazione di forma su classi di insiemi convessi, Tesi di Laurea, Pisa, 1996.
[6] , , What is the subdifferential of the closed convex hull of a function?, SIAM J. Math. Anal. 27 (6) (1996) 1661-1679. | Zbl | MR
[7] , , Extremal points of a functional on the set of convex functions, Proc. Amer. Math. Soc. 127 (1999) 1723-1727. | Zbl | MR
[8] Lachand-Robert T., Peletier M.A., Newton's problem of the body of minimal resistance in the class of convex developable functions, in preparation.
[9] , Philosophiae Naturalis Principia Mathematica, 1686. | Zbl
[10] , , Methods of Mathematical Physics, Vol. I, Academic Press, 1980. | MR
[11] , Convex Analysis, Princeton University Press, 1970. | Zbl | MR
[12] , Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993. | Zbl
[13] , Baire category in convexity, Atti Sem. Mat. Fis. Univ. Modena 39 (1991) 139-164. | Zbl | MR
[14] , Nearly all convex bodies are smooth and strictly convex, Monatsh. Math. 103 (1987) 57-62. | Zbl | MR





