@article{AIHPC_1998__15_5_581_0,
author = {Zaag, Hatem},
title = {Blow-up results for vector-valued nonlinear heat equations with no gradient structure},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {581--622},
year = {1998},
publisher = {Gauthier-Villars},
volume = {15},
number = {5},
mrnumber = {1643389},
zbl = {0902.35050},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1998__15_5_581_0/}
}
TY - JOUR AU - Zaag, Hatem TI - Blow-up results for vector-valued nonlinear heat equations with no gradient structure JO - Annales de l'I.H.P. Analyse non linéaire PY - 1998 SP - 581 EP - 622 VL - 15 IS - 5 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1998__15_5_581_0/ LA - en ID - AIHPC_1998__15_5_581_0 ER -
%0 Journal Article %A Zaag, Hatem %T Blow-up results for vector-valued nonlinear heat equations with no gradient structure %J Annales de l'I.H.P. Analyse non linéaire %D 1998 %P 581-622 %V 15 %N 5 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1998__15_5_581_0/ %G en %F AIHPC_1998__15_5_581_0
Zaag, Hatem. Blow-up results for vector-valued nonlinear heat equations with no gradient structure. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) no. 5, pp. 581-622. https://www.numdam.org/item/AIHPC_1998__15_5_581_0/
[1] , Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, Vol. 28, 1977, pp. 473-486. | Zbl | MR
[2] and , A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 841-863. | Zbl | MR
[3] and , Renormalization group and nonlinear PDEs, Quantum and non-commutative analysis, past present and future perspectives, Kluwer (Boston), 1993. | Zbl | MR
[4] and , Universality in blow-up for nonlinear heat equations, Nonlinearity, 7, 1994, pp. 539-575. | Zbl | MR
[5] and , Refined asymptotics for the blowup of ut - Δu = up, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 821-869 | Zbl | MR
[6] and , Modulation theory for the blowup of vector-valued nonlinear heat equations, J. Diff. Equations, Vol. 116, 1995, pp. 119-148. | Zbl | MR
[7] , and , On approximate self-similar solutions for some class of quasilinear heat equations with sources, Math. USSR-Sb, Vol. 52, 1985, pp. 155-180. | Zbl
[8] and , Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., Vol. 24, 1993, pp. 1254-1276. | Zbl | MR
[9] and , Asymptotically self-similar blowup of semilinear heat equations, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 297-319. | Zbl | MR
[10] and , Characterizing blowup using similarity variables, Indiana Univ. Math. J., Vol. 36, 1987, pp. 1-40. | Zbl | MR
[11] and , Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 845-884. | Zbl | MR
[12] , The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II, Internat. Press, Cambridge, 1995, pp. 7-136. | Zbl | MR
[13] and , Blow-up behavior of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poincaré, Vol. 10, 1993, pp. 131-189. | Zbl | MR | Numdam
[14] and , Flat blow-up in one-dimensional semilinear heat equations, Differential and Integral eqns., Vol. 5, 1992, pp. 973-997. | Zbl | MR
[15] and , The complex Ginzburg-Landau equation as a model problem, Dynamical systems and probabilistic methods in partial differential equations (Berkeley, 1994), Lectures in Appl. Math., Vol. 31, Amer. Math. Soc., Providence, RI, 1996, pp. 141-190. | Zbl | MR
[16] , Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put = -Au + F(u), Arch. Rat. Mech. Anal., Vol. 51, 1973, pp. 371-386. | Zbl | MR
[17] , Solution of a nonlinear heat equation with arbitrary given blow-up points, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 263-300. | Zbl | MR
[18] and , Stability of blow-up profile for equation of the type ut = Δu + |u|p-1u, preprint.
[19] , Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., Vol. 338, 1993, pp. 441-464. | Zbl | MR
[20] , Single-point blowup for a semilinear initial value problem, J. Diff. Equations, Vol. 55, 1984, pp. 204-224. | Zbl | MR






