@article{AIHPC_1997__14_6_691_0,
author = {Bartsch, Thomas},
title = {A generalization of the {Weinstein-Moser} theorems on periodic orbits of a hamiltonian system near an equilibrium},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {691--718},
year = {1997},
publisher = {Gauthier-Villars},
volume = {14},
number = {6},
mrnumber = {1482899},
zbl = {0891.58034},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1997__14_6_691_0/}
}
TY - JOUR AU - Bartsch, Thomas TI - A generalization of the Weinstein-Moser theorems on periodic orbits of a hamiltonian system near an equilibrium JO - Annales de l'I.H.P. Analyse non linéaire PY - 1997 SP - 691 EP - 718 VL - 14 IS - 6 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1997__14_6_691_0/ LA - en ID - AIHPC_1997__14_6_691_0 ER -
%0 Journal Article %A Bartsch, Thomas %T A generalization of the Weinstein-Moser theorems on periodic orbits of a hamiltonian system near an equilibrium %J Annales de l'I.H.P. Analyse non linéaire %D 1997 %P 691-718 %V 14 %N 6 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1997__14_6_691_0/ %G en %F AIHPC_1997__14_6_691_0
Bartsch, Thomas. A generalization of the Weinstein-Moser theorems on periodic orbits of a hamiltonian system near an equilibrium. Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 6, pp. 691-718. https://www.numdam.org/item/AIHPC_1997__14_6_691_0/
[B1] , The Conley index over a space, Math. Z., 209, 1992, pp. 167-177 | Zbl | MR
[B2] , Topological Methods for Variational Problems with Symmetries, Lecture Notes in Mathematics, Springer, Berlin Heidelberg, 1560, 1993. | Zbl | MR
[B3] , Bifurcation theory for nonlinear indefinite eigenvalue problems. In preparation.
[BL] and , Le lemme de Morse en classe Cr, r ≥ 1, Preprint.
[Ca] , Sul lemme di Morse, Boll. Unione Mat. Ital., 7, 1973, pp. 87-93 | Zbl | MR
[CMY] , and , Global Hopf bifurcation from a multiple eigenvalue. Nonlinear Analysis, T.M.A., 2, 1978, pp. 753-763. | Zbl | MR
[Co] , Isolated Invariant Sets and the Morse Index, CBMS, Regional Conf. Ser. in Math., 38, Amer. Math. Soc., Providence, R.I., 1978. | Zbl | MR
[CoZ] and , Morse type index theory for flows and periodic solutions for Hamiltonian systems, Comm. Pure Appl. Math., 37, 1984, pp. 207-253. | Zbl | MR
[tD] , Transformations Groups, de Gruyter, Berlin, 1987. | Zbl | MR
[D] , Lectures on Algebraic Topology, Grundlehren der math. Wiss. 200, Springer, Berlin Heidelberg, 1980. | Zbl | MR
[FR] and , Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math., 45, 1978, pp. 139-174. | Zbl | MR | EuDML
[FZ] and , The equivariant Conley index and bifurcations of periodic solutions of Hamiltonian systems, Ergod. Th. and Dynam. Syst., 8, 1988, pp. 87-97. | Zbl | MR
[J] , Basic Algebra I. Freedman, New York, 1985. | Zbl | MR
[L] , Problème général de la stabilité du mouvement, Ann. Fac. Sci., Toulouse, 2, 1907, pp. 203-474. | MR | JFM | Numdam | EuDML
[MW] and , Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989. | Zbl | MR
[Mo] , Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., 29, 1976, pp. 727-747. | Zbl
[R] , Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS, Regional Conf. Ser. in Math., 65, Amer. Math. Soc., providence, R.I., 1986. | Zbl | MR
[Sa] , Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc., 291, 1985, pp. 1-41. | Zbl | MR
[Sp] , Algebraic Topology, McGraw-Hill, New York, 1966. | Zbl | MR
[W1] , Normal modes for nonlinear Hamiltonian systems, Inv. math., 20, 1973, pp. 47-57. | Zbl | MR | EuDML
[W2] , Bifurcations and Hamilton's principle, Math. Z., 159, 1978, pp. 235- 248. | Zbl | MR | EuDML
[Ya] , On the theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujòbô and Dyson, Ann. Math., 60, 1954, pp. 262-282. | Zbl | MR
[Yo] , Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc., 22, 1963, pp. 509-512. | Zbl | MR





