Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking
Annales de l'Institut Henri Poincaré. C, Analyse non linéaire, Tome 13 (1996) no. 1, pp. 95-115
@article{AIHPC_1996__13_1_95_0,
     author = {Alama, Stanley and Del Pino, Manuel},
     title = {Solutions of elliptic equations with indefinite nonlinearities via {Morse} theory and linking},
     journal = {Annales de l'Institut Henri Poincar\'e. C, Analyse non lin\'eaire},
     pages = {95--115},
     year = {1996},
     publisher = {Gauthier-Villars},
     volume = {13},
     number = {1},
     mrnumber = {1373473},
     zbl = {0851.35037},
     language = {en},
     url = {https://www.numdam.org/item/AIHPC_1996__13_1_95_0/}
}
TY  - JOUR
AU  - Alama, Stanley
AU  - Del Pino, Manuel
TI  - Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking
JO  - Annales de l'Institut Henri Poincaré. C, Analyse non linéaire
PY  - 1996
SP  - 95
EP  - 115
VL  - 13
IS  - 1
PB  - Gauthier-Villars
UR  - https://www.numdam.org/item/AIHPC_1996__13_1_95_0/
LA  - en
ID  - AIHPC_1996__13_1_95_0
ER  - 
%0 Journal Article
%A Alama, Stanley
%A Del Pino, Manuel
%T Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking
%J Annales de l'Institut Henri Poincaré. C, Analyse non linéaire
%D 1996
%P 95-115
%V 13
%N 1
%I Gauthier-Villars
%U https://www.numdam.org/item/AIHPC_1996__13_1_95_0/
%G en
%F AIHPC_1996__13_1_95_0
Alama, Stanley; Del Pino, Manuel. Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking. Annales de l'Institut Henri Poincaré. C, Analyse non linéaire, Tome 13 (1996) no. 1, pp. 95-115. https://www.numdam.org/item/AIHPC_1996__13_1_95_0/

[1] S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. of Var. and P. D. E., Vol. 1, 1993, pp. 439-475. | Zbl | MR

[2] S. Alama and G. Tarantello, On the solvability of a semilinear elliptic equation via an associated eigenvalue problem, to appear inMath. Z. | Zbl | MR

[3] S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, preprint, 1994. | MR

[4] V. Benci and P. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math., Vol. 52, 1979, pp. 241-273. | Zbl | MR

[5] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Problèmes elliptiques indéfinis et théorèmes de Liouville non linéaires, C. R. Acad. Sci. Paris, t. 317, Série I, 1993, pp. 945-950. | Zbl | MR

[6] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, preprint, May 1994. | MR

[7] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, preprint, 1994. | Zbl | MR

[8] H. Brezis and L. Nirenberg, "H1 versus C1 minimizers", C. R. Acad. Sci. Paris, t. 317, Série I, 1993, pp. 465-572. | Zbl | MR

[9] K.C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems", Birkhäuser: Boston, 1993. | Zbl | MR

[10] K.C. Chang, "H1 versus C1 isolated critical points", C. R. Acad. Sci. Paris, t. 319, Série I, 1994, pp. 441-446. | Zbl | MR

[11] M. Del Pino and P. Felmer, Multiple solutions for a semilinear elliptic equation, preprint, 1992. | MR

[12] J.F. Escobar and R.M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., Vol. 86, 1986, pp. 243-254. | Zbl | MR

[13] H. Hofer, A Note on the Topological Degree at a Critical Point of Mountainpass-type, Proc. Am. Math. Soc., Vol. 90, 1984, pp. 309-315. | Zbl | MR

[14] J. Kazdan and F. Warner, Scalar curvature and the conformal deformation of Riemannian structure, J. Diff. Geom., Vol. 10, 1975, pp. 113-134. | Zbl | MR

[15] J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer: New York, 1989. | Zbl | MR

[16] T. Ouyang, On the positive solutions of semilinear elliptic equations Δu + λu + hup = 0 on compact manifolds, Part II, Indiana Univ. Math. J., Vol. 40, 1992, pp. 1083-1140. | Zbl | MR

[17] P. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS-NSF, Vol. 65, American Math. Soc.: Providence, 1986. | Zbl | MR

[18] M. Struwe, "Variational Methods", Springer-Verlag: Berlin, 1990. | Zbl | MR

[19] H. Tehrani, Ph.D. thesis, New York Univ., 1994.

[20] Z.Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincaré- Analyse Non lin., Vol. 8, 1991, pp. 43-57. | Zbl | MR | Numdam