Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary
Annales de l'Institut Henri Poincaré. C, Analyse non linéaire, Tome 12 (1995) no. 2, pp. 155-171
@article{AIHPC_1995__12_2_155_0,
     author = {Bandle, Catherine and Marcus, Moshe},
     title = {Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary},
     journal = {Annales de l'Institut Henri Poincar\'e. C, Analyse non lin\'eaire},
     pages = {155--171},
     year = {1995},
     publisher = {Gauthier-Villars},
     volume = {12},
     number = {2},
     mrnumber = {1326666},
     zbl = {0840.35033},
     language = {en},
     url = {https://www.numdam.org/item/AIHPC_1995__12_2_155_0/}
}
TY  - JOUR
AU  - Bandle, Catherine
AU  - Marcus, Moshe
TI  - Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary
JO  - Annales de l'Institut Henri Poincaré. C, Analyse non linéaire
PY  - 1995
SP  - 155
EP  - 171
VL  - 12
IS  - 2
PB  - Gauthier-Villars
UR  - https://www.numdam.org/item/AIHPC_1995__12_2_155_0/
LA  - en
ID  - AIHPC_1995__12_2_155_0
ER  - 
%0 Journal Article
%A Bandle, Catherine
%A Marcus, Moshe
%T Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary
%J Annales de l'Institut Henri Poincaré. C, Analyse non linéaire
%D 1995
%P 155-171
%V 12
%N 2
%I Gauthier-Villars
%U https://www.numdam.org/item/AIHPC_1995__12_2_155_0/
%G en
%F AIHPC_1995__12_2_155_0
Bandle, Catherine; Marcus, Moshe. Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary. Annales de l'Institut Henri Poincaré. C, Analyse non linéaire, Tome 12 (1995) no. 2, pp. 155-171. https://www.numdam.org/item/AIHPC_1995__12_2_155_0/

[1] C. Bandle and M. Essèn, On the Solutions of Quasilinear Elliptic problems with Boundary Blow-up, Symposia Matematica, Vol. 35, 1994, pp. 93-111. | Zbl | MR

[2] C. Bandle C. and M. MARCUS M., Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour, J. d' Anal. Mathém., Vol. 58, 1992, pp. 9-24. | Zbl | MR

[3] E.B. Dynkin, A probabilistic approach to one class of nonlinear differential equations, Probab. Theory Rel. Fields, Vol. 90, 1991, pp. 89-115. | Zbl | MR

[4] J.B. Keller, On solutions of Δu = f(u), Comm. Pure Appl. Math., Vol. 10, 1957, pp. 503-510. | Zbl | MR

[5] C. Loewner and L. Nirenberg, Partial differential invariant under conformal or projective transformations, Contributions to Analysis (L. Ahlfors ed.), Acad. Press N. Y., 1974, pp. 245-272. | Zbl | MR

[6] M. Marcus, On solutions with blow-up at the boundary for a class of semilinear elliptic equations, Developments in Partial Differential Equations and Applications (Buttazzo et al ed.), Plenum Press, 1992, pp. 65-79. | Zbl | MR

[7] L. Véron, Semilinear elliptic equations with uniform blow-up on the boundary, J. d' Anal. Mathém., Vol. 58, 1992. | Zbl | MR