@article{AIHPC_1993__10_3_313_0,
author = {Filippas, Stathis and Liu, Wenxiong},
title = {On the blowup of multidimensional semilinear heat equations},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {313--344},
year = {1993},
publisher = {Gauthier-Villars},
volume = {10},
number = {3},
mrnumber = {1230711},
zbl = {0815.35039},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1993__10_3_313_0/}
}
TY - JOUR AU - Filippas, Stathis AU - Liu, Wenxiong TI - On the blowup of multidimensional semilinear heat equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 1993 SP - 313 EP - 344 VL - 10 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1993__10_3_313_0/ LA - en ID - AIHPC_1993__10_3_313_0 ER -
%0 Journal Article %A Filippas, Stathis %A Liu, Wenxiong %T On the blowup of multidimensional semilinear heat equations %J Annales de l'I.H.P. Analyse non linéaire %D 1993 %P 313-344 %V 10 %N 3 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1993__10_3_313_0/ %G en %F AIHPC_1993__10_3_313_0
Filippas, Stathis; Liu, Wenxiong. On the blowup of multidimensional semilinear heat equations. Annales de l'I.H.P. Analyse non linéaire, Tome 10 (1993) no. 3, pp. 313-344. https://www.numdam.org/item/AIHPC_1993__10_3_313_0/
[1] and , Final Time Blowup Profiles For Semilinear Parabolic Equations Via Center Manifold Theory, preprint. | MR
[2] and , A description of self similar blow up for dimensions n ≧ 3, Ann. Inst. H. Poincaré, Anal. Non lineaire, Vol. 5, 1988, pp. 1-22. | Zbl | MR | Numdam
[3] and , A rescalling algorithm for the numerical calculation of blowing up solutions, Comm. Pure Appl., Math., Vol. 41, 1988, pp. 841-863. | Zbl | MR
[4] , Stable Blow-up Patterns, J. Diff. Eqns., Vol. 98, 1992, pp. 947-960. | Zbl | MR
[5] and , Convergence, asymptotic periodicity, and finite-point blowup in one-dimensional semilinear heat equations, J. Diff. Eqns., Vol. 78, 1989, pp. 160-190. | Zbl | MR
[6] , Applications of centre manifold theory, Springer-Verlag, New York, 1981. | Zbl | MR
[7] and , Refined Asymptotic for the blowup of ut - Δu = up, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 821-869. | Zbl | MR
[8] , Blow-up of Solutions of Nonlinear Heat and Wave Equations, prcprint.
[9] and , Blowup of positive solutions of semilinear heat equations, Indiana Univ. Math. J., Vol. 34, 1985, pp. 425-447. | Zbl | MR
[10] and , Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Diff. Urav. 22, Vol. 7, 1986, pp. 1165-1173. | Zbl | MR
[11] , and , The space structure near a blowup point for semilinear heat equations: of a formal approch, USSR Comput. Math. and Math. Physics, Vol. 31, 3, 1991, pp. 399-411. | Zbl | MR
[12] and , Asymptotically self similar blowup of semilinear heat equations, Comm. Pure Appli. Math., Vol. 38, 1985, pp. 297-319. | Zbl
[13] and , Characterising blow up using similarity variables, Indiana Univ. Math., Vol. 36, 1987, pp. 1-40. | Zbl
[14] and , Nondegeneracy of blowup for semilienear heat equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 297-319.
[15] and , Blow-up Behaviour of One-Dimensional Semilinear Parabolic Equations, Ann. Inst. H. Poincaré, Anal. non linéaire, to appear. | Zbl | Numdam
[16] and , Flat Blow-up in One-Dimensional Semilinear Parabolic Equations, Diff. and Integral Eqns., Vol. 5, 5, 1992, pp. 973-997. | Zbl
[17] and , Blow-up Profiles in One-Dimensional Semilinear Parabolic Equations, Comm. P.D.E's, Vol. 17, 1992, pp. 205-219. | Zbl
[18] , Perturbation Theory for Linear Operators, Springer-Verlag 1980. | Zbl
[19] , and , Linear and quasilinear equations of parabolic type, Amer. Math. Soc. Transl., American Mathematical Society, Providence, R.I., 1968. | Zbl
[20] , Blowup Behavior for semilinear heat equations: multi-dimensional case, IMA preprint 711, Nov. 1990.
[21] , Perturbation theory of eigenvalue problems, Lecture Notes, New York University, 1953.
[22] , Local behavior near blowup points for semilinear parabolic equations, J. Diff. Eqns., to appear. | Zbl
[23] , Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., to appear. | Zbl





