@article{AIHPC_1992__9_6_597_0,
author = {Terracini, Susanna},
title = {Multiplicity of periodic solution with prescribed energy to singular dynamical systems},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {597--641},
year = {1992},
publisher = {Gauthier-Villars},
volume = {9},
number = {6},
mrnumber = {1198306},
zbl = {0771.34035},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1992__9_6_597_0/}
}
TY - JOUR AU - Terracini, Susanna TI - Multiplicity of periodic solution with prescribed energy to singular dynamical systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 1992 SP - 597 EP - 641 VL - 9 IS - 6 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1992__9_6_597_0/ LA - en ID - AIHPC_1992__9_6_597_0 ER -
%0 Journal Article %A Terracini, Susanna %T Multiplicity of periodic solution with prescribed energy to singular dynamical systems %J Annales de l'I.H.P. Analyse non linéaire %D 1992 %P 597-641 %V 9 %N 6 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1992__9_6_597_0/ %G en %F AIHPC_1992__9_6_597_0
Terracini, Susanna. Multiplicity of periodic solution with prescribed energy to singular dynamical systems. Annales de l'I.H.P. Analyse non linéaire, Tome 9 (1992) no. 6, pp. 597-641. https://www.numdam.org/item/AIHPC_1992__9_6_597_0/
[1] and , Critical Points with Lack of Compactness and Applications to Singular Dynamical Systems, Ann. di Matem. Pura e Appl., Ser. IV, Vol. CIL, 1987, pp. 237-259. | Zbl | MR
[2] and , Noncollision Orbits for a Class of Keplerian-Like Potentials, Ann. I.H.P. Analyse non linéaire, Vol. 5, 1988, pp. 287-295. | Zbl | MR | Numdam
[3] and , Perturbations of Hamiltonian Systems with Keplerian Potentials, Math. Zeit., Vol. 201, 1989, pp. 227-242. | Zbl | MR
[4] and , Closed Orbits of Fixed Energy for Singular Hamiltonian Systems, Preprint. | MR
[5] and , A Minimax Method for a Class of Hamiltonian Systems with Singular Potentials, J. Funct. Anal., Vol. 82, 1989, pp. 412-428. | Zbl | MR
[6] , and , Abstract Critical Points Theory and Application to Some Nonlinear Problems with "Strong" Resonance at Infinity, Nonlin. anal. T.M.A., Vol. 7, 1983, pp.981-1012. | Zbl | MR
[7] , A Geometrical Index for a Group S1 and Some Applications to the Study of Periodic Solutions of O.D.E., Comm. Pure Appl. Math., Vol. 34, 1981, pp. 393-432. | Zbl | MR
[8] , On the Critical Point Theory for Indefinite Functionals in Presence of Symmetries, Trans. Am. Math. Soc., Vol. 274, 1982, pp. 533-572. | Zbl | MR
[9] and , Periodic Solutions of Prescribed Energy for a Class of Hamiltonian Systems with Singular Potentials, J. Differential equations, Vol. 82, 1989, pp. 60-70. | Zbl | MR
[10] , and , On a Class of Dynamical Systems with Singular Potentials, Preprint S.I.S.S.A., Nonlin. Anal. T.M.A. (to appear). | MR | Zbl
[11] , Dynamical Systems with Effective-Like Potentials, Nonlin. Anal. T.M.A., Vol. 12, 1988, pp. 209-222. | Zbl | MR
[12] , Periodic Solutions for a Class of Planar, Singular Dynamical Systems, J. Math. Pures et Appl., T. 68, 1989, pp. 109-119. | Zbl | MR
[13] and , Dynamical Systems with Newtonian Type Potentials, Ann. Scuola Norm. Sup Pisa, Cl. Sci., Vol. 4, 1989 (to appear). | Numdam | Zbl | MR | EuDML
[14] , and , Periodic Solutions of Dynamical Systems with Newtonian Type Potentials, Atti Accad. Naz. Lincei, Rend. Cl. Sc. Fis. Mat. Nat., Vol. 81, 1987, pp. 271-278. | Zbl | MR | EuDML
[15] , A minimizing Property of Keplerian Orbits, Amer. J. Math., Vol. 99, 1975, pp. 961-971. | Zbl | MR
[16] , Conservative Dynamical Systems Involving Strong Forces, Trans. A.M.S., Vol. 204, 1975, pp. 113-135. | Zbl | MR
[19] and ., Méthodes topologiques dans les problèmes variaionnels, Hermann, Paris, 1934. | Zbl | JFM
[20] , Regularization of Kepler's Problem and the Averaging Method on a Maniold, Comm. Pure Appl. Math., Vol. 23, 1970, pp. 609-636. | Zbl | MR
[21] , An Homotopical Index and Multiplicity of Periodic Solutions to Dynamical Systems with Singular Potentials, J. of Diff. Eq. (to appear). | Zbl | MR
[22] , Second Order Conservative Systems with Singular Potentials: Noncollision Periodic Solutions to the Fixed Energy Problem, Preprint, 1990.
[23] , Ph. D. Thesis, Preprint S.I.S.S.A., Trieste, 1990.






