@article{AIHPB_2007__43_1_1_0,
author = {Pratelli, Aldo},
title = {On the equality between {Monge's} infimum and {Kantorovich's} minimum in optimal mass transportation},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {1--13},
year = {2007},
publisher = {Elsevier},
volume = {43},
number = {1},
doi = {10.1016/j.anihpb.2005.12.001},
mrnumber = {2288266},
zbl = {1121.49036},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpb.2005.12.001/}
}
TY - JOUR AU - Pratelli, Aldo TI - On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2007 SP - 1 EP - 13 VL - 43 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpb.2005.12.001/ DO - 10.1016/j.anihpb.2005.12.001 LA - en ID - AIHPB_2007__43_1_1_0 ER -
%0 Journal Article %A Pratelli, Aldo %T On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation %J Annales de l'I.H.P. Probabilités et statistiques %D 2007 %P 1-13 %V 43 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpb.2005.12.001/ %R 10.1016/j.anihpb.2005.12.001 %G en %F AIHPB_2007__43_1_1_0
Pratelli, Aldo. On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) no. 1, pp. 1-13. doi: 10.1016/j.anihpb.2005.12.001
[1] , Lecture notes on optimal transport problems, in: Mathematical Aspects of Evolving Interfaces, Lecture Notes in Math., vol. 1812, Springer, 2003, pp. 1-52. | Zbl | MR
[2] , , Existence and stability results in the theory of optimal transportation, in: Optimal Transportation and Applications, Lecture Notes in Math., vol. 1813, Springer, 2003, pp. 123-160. | Zbl | MR
[3] , , , Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs, J. Amer. Math. Soc. 15 (2002) 1-26. | Zbl | MR
[4] , , Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137 (653) (1999). | Zbl
[5] , The Monge mass transfer problem and its applications, Contemp. Math. 226 (1999) 79-104. | Zbl | MR
[6] , On the transfer of masses, Dokl. Akad. Nauk SSSR 37 (1942) 227-229.
[7] , On a problem of Monge, Uspekhi Mat. Nauk 3 (1948) 225-226.
[8] G. Monge, Memoire sur la Theorie des Déblais et des Remblais, Hist. de l'Acad. des Sciences de Paris, 1781.
[9] , Homeomorphic measures in metric spaces, Proc. Amer. Math. Soc. 24 (1970) 419-423. | Zbl | MR
[10] , Existence of optimal transport maps and regularity of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy, 2003. Available on, http://cvgmt.sns.it/.
[11] , , Mass Transportation Problems, Springer-Verlag, 1998.
[12] , Real Analysis, second ed., Macmillan, 1968. | Zbl
[13] , , On the Monge mass transfer problem, Calc. Var. Partial Differential Equations 13 (2001) 19-31. | Zbl | MR
Cité par Sources :






