@article{AIHPB_2005__41_5_953_0,
author = {Daviaud, Olivier},
title = {Thick points for the {Cauchy} process},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {953--970},
year = {2005},
publisher = {Elsevier},
volume = {41},
number = {5},
doi = {10.1016/j.anihpb.2004.10.001},
mrnumber = {2165259},
zbl = {1074.60084},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpb.2004.10.001/}
}
TY - JOUR AU - Daviaud, Olivier TI - Thick points for the Cauchy process JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2005 SP - 953 EP - 970 VL - 41 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpb.2004.10.001/ DO - 10.1016/j.anihpb.2004.10.001 LA - en ID - AIHPB_2005__41_5_953_0 ER -
%0 Journal Article %A Daviaud, Olivier %T Thick points for the Cauchy process %J Annales de l'I.H.P. Probabilités et statistiques %D 2005 %P 953-970 %V 41 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpb.2004.10.001/ %R 10.1016/j.anihpb.2004.10.001 %G en %F AIHPB_2005__41_5_953_0
Daviaud, Olivier. Thick points for the Cauchy process. Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 5, pp. 953-970. doi: 10.1016/j.anihpb.2004.10.001
[1] , Complex Analysis, McGraw-Hill, 1979. | Zbl | MR
[2] , Levy Processes, Cambridge University Press, New York, 1996. | Zbl | MR
[3] , Local time for a class of Markov processes, Illinois J. Math. 8 (1964) 19-39. | Zbl | MR
[4] , , , , Thick points for transient symmetric stable processes, Electronic J. Probab. 4 (10) (1999) 1-13. | Zbl | MR
[5] , , , , Thick points for spatial Brownian motion: Multifractal analysis of occupation measure, Ann. Probab. 28 (2000) 1-35. | Zbl | MR
[6] , , , , Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk, Acta Math. 186 (2001) 239-270. | Zbl | MR
[7] , , , , Thick points for intersections of planar Brownian paths, Trans. Amer. Math. Soc. 354 (2002) 4969-5003. | Zbl | MR
[8] , , Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. | Zbl | MR
[9] , , Brownian Motion and Stochastic Calculus, Springer-Verlag, 1991. | Zbl | MR
[10] , Slow points and fast points of local times, Ann. Probab. 27 (1999) 150-165. | Zbl | MR
[11] , , Uniform measure results for the image of subsets under Brownian motion, Probab. Theory Related Fields 76 (1987) 257-289. | Zbl | MR
[12] , Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion, Trans. Amer. Math. Soc. 106 (1963) 436-444. | Zbl | MR
[13] , , Continuous Martingales and Brownian Motion, Springer-Verlag, 1998. | Zbl
[14] , , Logarithmic multifractal spectrum of stable occupation measure, Stochastic Process Appl. 79 (1998) 249-261. | Zbl | MR
[15] , The set of zeros of a semi-stable process, Illinois J. Math. 7 (1963) 631-637. | Zbl | MR
Cité par Sources :





