@article{AIHPB_2005__41_2_123_0,
author = {Decreusefond, L.},
title = {Stochastic integration with respect to {Volterra} processes},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {123--149},
year = {2005},
publisher = {Elsevier},
volume = {41},
number = {2},
doi = {10.1016/j.anihpb.2004.03.004},
mrnumber = {2124078},
zbl = {1071.60040},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpb.2004.03.004/}
}
TY - JOUR AU - Decreusefond, L. TI - Stochastic integration with respect to Volterra processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2005 SP - 123 EP - 149 VL - 41 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpb.2004.03.004/ DO - 10.1016/j.anihpb.2004.03.004 LA - en ID - AIHPB_2005__41_2_123_0 ER -
%0 Journal Article %A Decreusefond, L. %T Stochastic integration with respect to Volterra processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2005 %P 123-149 %V 41 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpb.2004.03.004/ %R 10.1016/j.anihpb.2004.03.004 %G en %F AIHPB_2005__41_2_123_0
Decreusefond, L. Stochastic integration with respect to Volterra processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 2, pp. 123-149. doi: 10.1016/j.anihpb.2004.03.004
[1] , Sobolev Spaces, Academic Press, 1975. | Zbl | MR
[2] , , , Stochastic Stratonovitch calculus for fractional Brownian motion with Hurst parameter less than , Taiwanese J. Math. 5 (3) (2001) 609-632. | Zbl | MR
[3] , , , Stochastic calculus with respect to Gaussian processes, Ann. Probab. 29 (2) (2001) 766-801. | Zbl | MR
[4] , , , , Identification d'un processus gaussien multifractionnaire avec des ruptures sur la fonction d'échelle, C. R. Acad. Sci. Paris Sér. I Math. 329 (5) (1999) 435-440. | Zbl | MR
[5] , , , Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 39 (1) (2003) 27-68. | Zbl | MR | Numdam
[6] , , Stochastic differential equations for fractional Brownian motions, C. R. Acad. Sci. Paris Sér. I Math. 331 (1) (2000) 75-80. | Zbl | MR
[7] , , Itô's formula with respect to fractional Brownian motion and its application, J. Appl. Math. Stochastic Anal. 9 (4) (1996) 439-448. | Zbl | MR
[8] , Stochastic calculus for Volterra processes, C. R. Acad. Sci. Paris Sér. I Math. 334 (10) (2002) 903-908. | Zbl
[9] , , Application du calcul des variations stochastiques au mouvement brownien fractionnaire, C. R. Acad. Sci. Paris Sér. I Math. 321 (12) (1995) 1605-1608. | Zbl | MR
[10] , , Stochastic analysis of the fractional Brownian motion, Potential Anal. 10 (2) (1999) 177-214. | Zbl | MR
[11] , , (Eds.), Long Range Dependence: Theory and Applications, Birkhäuser, 2002, pp. 203-226, Chapter 10.
[12] , , Covariation de convolution de martingales, C. R. Acad. Sci. Paris Sér. I Math. 326 (5) (1998) 601-606. | Zbl | MR
[13] , , n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes, Stochastic Process. Appl. 104 (2) (2003) 259-299. | Zbl | MR
[14] , , Capacités gaussiennes, Ann. Inst. Fourier 41 (1) (1991) 49-76. | Zbl | MR | Numdam
[15] , , On fractional Brownian processes, Potential Anal. 10 (3) (1999) 273-288. | Zbl | MR
[16] , , The FBM Ito's formula through analytic continuation, Electron. J. Probab. 6 (26) (2001) 22, (electronic). | Zbl | MR
[17] , , , Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index , Ann. Probab. 31 (4) (2003) 1772-1820. | Zbl
[18] , Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (2) (1998) 215-310. | Zbl | MR
[19] , , Special Functions of Mathematical Physics, Birkhäuser, 1988. | Zbl | MR
[20] , The Malliavin Calculus and Related Topics, Springer-Verlag, 1995. | Zbl | MR
[21] , , , Fractional Integrals and Derivatives, Gordon and Breach Science, 1993. | Zbl | MR
[22] , Estimates of the Sobolev norm of a product of two functions, J. Math. Anal. Appl. 255 (1) (2001) 137-146. | Zbl | MR
[23] , The Itô formula for anticipative processes with nonmonotonous time scale via the Malliavin calculus, Probab. Theory Related Fields 79 (1988) 249-269. | Zbl | MR
[24] , An Introduction to Analysis on Wiener Space, Lectures Notes in Mathematics, vol. 1610, Springer-Verlag, 1995. | Zbl | MR
[25] , , Transformations of Measure on Wiener Spaces, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. | MR
[26] , Integration with respect to fractal functions and stochastic calculus, I, Probab. Theory Related Fields 111 (3) (1998) 333-374. | Zbl | MR
Cité par Sources :






