@article{AIHPB_1999__35_5_631_0,
author = {Bezuidenhout, Carol and Grimmett, Geoffrey},
title = {A central limit theorem for random walks in random labyrinths},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {631--683},
year = {1999},
publisher = {Gauthier-Villars},
volume = {35},
number = {5},
mrnumber = {1705683},
zbl = {0938.60033},
language = {en},
url = {https://www.numdam.org/item/AIHPB_1999__35_5_631_0/}
}
TY - JOUR AU - Bezuidenhout, Carol AU - Grimmett, Geoffrey TI - A central limit theorem for random walks in random labyrinths JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1999 SP - 631 EP - 683 VL - 35 IS - 5 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPB_1999__35_5_631_0/ LA - en ID - AIHPB_1999__35_5_631_0 ER -
%0 Journal Article %A Bezuidenhout, Carol %A Grimmett, Geoffrey %T A central limit theorem for random walks in random labyrinths %J Annales de l'I.H.P. Probabilités et statistiques %D 1999 %P 631-683 %V 35 %N 5 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPB_1999__35_5_631_0/ %G en %F AIHPB_1999__35_5_631_0
Bezuidenhout, Carol; Grimmett, Geoffrey. A central limit theorem for random walks in random labyrinths. Annales de l'I.H.P. Probabilités et statistiques, Tome 35 (1999) no. 5, pp. 631-683. https://www.numdam.org/item/AIHPB_1999__35_5_631_0/
[1] and , On the chemical distance for supercritical Bernoulli percolation, Ann. Probab. 24 (1996) 1036-1048. | Zbl | MR
[2] , Transport properties of stochastic Lorentz models, Rev. Modern Phys. 54 (1982) 195-234. | MR
[3] and , Transport properties of the one dimensional stochastic Lorentz model. I. Velocity autocorrelation, J. Statist. Phys. 31 (1982) 231-254. | MR
[4] , Convergence of Probability Measures, Wiley, New York, 1968. | Zbl | MR
[5] and , Recurrence properties of Lorentz lattice gas cellular automata, J. Statist. Phys. 67 (1992) 289-302. | Zbl | MR
[6] and , Density and uniqueness in percolation, Comm. Math. Phys. 121 ( 1989) 501-505. | Zbl | MR
[7] , New types of diffusions in lattice gas cellular automata, in: M. Mareschal and B.L. Holian (Eds.), Microscopic Simulations of Complex Hydrodynamical Phenomena, Plenum Press, New York, 1991, pp. 137-152.
[8] and , New results for diffusion in Lorentz lattice gas cellular automata, J. Statist. Phys. 81 (1995) 445-466.
[9] and , Novel phenomena in Lorentz lattice gases, Physica A 219 (1995) 56-87.
[10] , , and , Invariance principle for reversible Markov processes with application to diffusion in the percolation regime, in: R.T. Durrett (Ed.), Particle Systems, Random Media and Large Deviations, Contemporary Mathematics No. 41, Amer. Math. Soc., Providence, RI, 1985, pp. 71-85. | Zbl | MR
[11] , , and , An invariance principle for reversible Markov processes. Applications to random motions in random environments, J. Statist. Phys. 55 (1989) 787-855. | Zbl | MR
[12] , Stochastic Processes, Wiley, New York, 1953. | Zbl | MR
[13] and , Random Walks and Electric Networks, Carus Mathematical Monograph No. 22, AMA, Washington, DC, 1984. | Zbl
[14] , Collected Scientific Papers, M.J. Klein (Ed.), North-Holland, Amsterdam, 1959. | Zbl
[15] and , Markov Processes, Characterization and Convergence, Wiley, New York, 1986. | Zbl | MR
[16] , Antisymmetric functionals of reversible Markov processes, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 31 (1995) 177-190. | Zbl | MR | Numdam
[17] , Percolation, Springer, Berlin, 1989. | Zbl
[18] , Percolation and disordered systems, in: P. Bernard (Ed.), Ecole d'Eté de Probabilités de Saint Flour XXVI-1996, Lecture Notes in Mathematics, Vol. 1665, Springer, Berlin, 1997, pp. 153-300. | Zbl | MR
[19] and , First-passage percolation, network flows and electrical networks, Z. Wahr. Ver. Geb. 66 (1984) 335-366. | Zbl | MR
[20] and , The supercritical phase of percolation is well behaved, Proc. Royal Society (London), Ser. A 430 (1990) 439-457. | Zbl | MR
[21] , and , Random walks in random labyrinths, Markov Process Related Fields 2 (1996) 69-86. | Zbl | MR
[22] , and , Invariance principle for the stochastic Lorentz lattice gas, J. Statist. Phys. 66 (1992) 1583-1598. | Zbl | MR
[23] , Percolation Theory for Mathematicians, Birkhäuser, Boston, 1982. | Zbl
[24] and , Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion, Comm. Math. Phys. 104 (1986) 1-19. | Zbl | MR
[25] , and , Domination by product measures, Ann. Probab. 25 (1997) 71-95. | Zbl | MR
[26] , The motion of electrons in metallic bodies, I, II, and III, Koninklijke Akademie van Wetenschappen te Amsterdam, Section of Sciences 7 (1905) 438-453, 585-593, 684-691.
[27] , Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Related Fields 104 (1996) 427-466. | Zbl | MR
[28] , Infinite paths in a Lorentz lattice gas model, Probab. Theory Related Fields (1996), to appear. | Zbl | MR
[29] , Persistent random walks in random environment, Probab. Theory Related Fields 71 (1986) 615-625. | Zbl | MR
[30] and , Diffusion in Lorentz lattice gas cellular automata: The honeycomb and quasi-lattices compared with the square and triangular lattices, J. Statist. Phys. 81 (1995) 467-495.
[31] , and , Lorentz lattice-gas and kinetic-walk model, Phys. Rev. A 44 (1991) 2410-2428.





