@article{AIHPA_1998__68_1_17_0,
author = {Petkov, Vesselin and Popov, Georgi},
title = {Semi-classical trace formula and clustering of eigenvalues for {Schr\"odinger} operators},
journal = {Annales de l'I.H.P. Physique th\'eorique},
pages = {17--83},
year = {1998},
publisher = {Gauthier-Villars},
volume = {68},
number = {1},
mrnumber = {1618918},
zbl = {0919.35095},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1998__68_1_17_0/}
}
TY - JOUR AU - Petkov, Vesselin AU - Popov, Georgi TI - Semi-classical trace formula and clustering of eigenvalues for Schrödinger operators JO - Annales de l'I.H.P. Physique théorique PY - 1998 SP - 17 EP - 83 VL - 68 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1998__68_1_17_0/ LA - en ID - AIHPA_1998__68_1_17_0 ER -
%0 Journal Article %A Petkov, Vesselin %A Popov, Georgi %T Semi-classical trace formula and clustering of eigenvalues for Schrödinger operators %J Annales de l'I.H.P. Physique théorique %D 1998 %P 17-83 %V 68 %N 1 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPA_1998__68_1_17_0/ %G en %F AIHPA_1998__68_1_17_0
Petkov, Vesselin; Popov, Georgi. Semi-classical trace formula and clustering of eigenvalues for Schrödinger operators. Annales de l'I.H.P. Physique théorique, Tome 68 (1998) no. 1, pp. 17-83. https://www.numdam.org/item/AIHPA_1998__68_1_17_0/
[1] , , and , A remark on a priori bound and existence of periodic solutions of hamiltonian systems, Periodic solutions of hamiltonian systems and related topics, NATO ASI Series, Series C, 209, 1987, pp. 85-88. | Zbl | MR
[2] and , A semi-classical trace formula for Schrödinger operators, Commun. Math. Phys., Vol. 136, 1991, pp. 567-584. | Zbl | MR
[3] and , Rayleigh quasimodes in linear elasticity, Comm. Partial Diff. Equations, Vol. 17, 1992, pp. 1327-1367. | Zbl | MR
[4] and , A semi-classical trace formula for several commuting operators, Preprint, Université de Nantes, 1996.
[5] , Spectre d'un hamiltonien quantique et mécanique classique, Comm. Partial Diff. Equations, Vol. 5, 1980, pp. 595-644. | Zbl | MR
[6] , Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv., Vol. 54, 1979, pp. 508-522. | Zbl | MR
[7] , Opérateurs h-pseudo-différentiels à flot périodique et asymptotique semi-classique, Thèse de Doctorat, Université Paris XIII, 1994.
[8] , Oscillatory integrals, Lagrange immersions and infolding of singularities, Comm. in Pure and Appl. Math., Vol. 27, 1974, pp. 207-281. | Zbl | MR
[9] and , The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Vol. 29, 1975, 39-79. | Zbl | MR
[10] and , On the period spectrum of a symplectic map, J. Funct. Anal., Vol. 100, 1991, pp. 317-358. | Zbl | MR
[11] and , Circular symmetry and the trace formula, Invent. Math., Vol. 96, 1989, pp. 385-423. | Zbl | MR
[12] and , Sharp asymptotics of the spectrum of the Laplace operator on a manifold with periodic geodesics, Trudy Matem. Inst. Steklov, Vol. 179, 1988 (in Russian), English transl. in Proc. Steklov Institute of Mathematics, Vol. 179, 1989, pp. 35-53. | Zbl | MR
[13] , Periodic orbits and classical quantization condition, J. Math. Phys., Vol. 12, 1971, pp. 345-358.
[14] , and , Ergodicité et limite semi-classique, Commun. Math. Phys., Vol. 109, 1987, pp. 313-326. | Zbl | MR
[15] and , Propriétes asymptotiques du spectre d'opérateurs pseudo-différentieles sur Rn, Comm. Partial Diff. Equations, Vol. 7, 1982, pp. 795-882. | Zbl | MR
[16] and , Calcul fonctionnel par la transformation de Mellin, J. Funct. Anal., Vol. 53, 1983, pp. 246-268. | Zbl | MR
[17] and , Symplectic Invariants and Hamiltonian Dynamics, Birkhäser, Basel, 1994. | Zbl | MR
[ 18] , Fourier integral operators I, Acta Math. Vol. 127, 1971, pp. 79-183. | Zbl | MR
[19] , The Analysis of Linear Partial Differential Operators III, Springer, Berlin - Heidelberg - New York, 1985. | Zbl | MR
[20] , The Analysis of Linear Partial Differential Operators IV, Springer, Berlin - Heidelberg - New York, 1985. | MR
[21] , Semi-classical microlocal analysis and precise spectral asymptotics, Ecole Polytechnique, Centre de Mathématiques, Preprints 1, 2, 3, 1991.
[22] , Semiclassical principal symbols and Gutzwiller's trace formula, Reports on Mathematical Physics, Vol. 31, 1992, pp. 279-295. | Zbl | MR
[23] et , Sur la formule semi-classique des traces, C. R, Acad. Sci. Paris, t. 313, Série I, 1991, pp. 217-222. | Zbl | MR
[24] and , On the Lebesgue measure of the periodic points of a contact manifold, Math. Z., Vol. 218, 1995, pp. 91-102. | Zbl | MR
[25] et , Une formule de trace semi-classique et asymptotiques de valeurs propres de l'opérateur de Schrödinger, C. R. Acad. Sci. Paris, t. 323, Série I, 1996, pp. 163-168. | Zbl | MR
[26] and , Asymptotiques semi-clasiques du spectre d'hamiltoniens quantiques et trajectoires classiques périodiques, Comm Part. Diff. Equations, Vol. 10, 1985, pp. 365-390. | Zbl | MR
[27] , Length spectrum invariants of Riemannian manifolds, Math. Z., Vol. 213, 1993, pp. 311-351. | Zbl | MR
[28] , Asymptotics of the spectrum of a pseudodifferential operator with periodic characteristics, Zap. Nauchn. Sem. Leningrad. Otdel Mat. Inst. Steklov (LOMI). vol. 152. 1986, pp. 94-104 (in Russian), English translation in J. Soviet Math., Vol. 40, 1988. pp. 645-652. | Zbl | MR
[29] , Exact asymptotics of the spectrum of a boundary value problem and periodic billiards. Izv. AN SSSR, Ser. Mat,. Vol. 52, 1988, pp. 1230-1251 (in Russian), English translation in Math. USSR Izvestiya, Vol. 33, 1989, pp. 553-573. | Zbl | MR
[30] and , Branching Hamiltonian billiards, Doklady Akad. Nauk SSSR, Vol. 301, 1988, pp. 271-274, English translation, Soviet Math. Dokl., Vol. 38, 1989, pp. 64-68. | Zbl | MR
[31] and , Spectral statistics on Zoll surfaces, Commun. Math. Pxhysics, Vol. 154, 1993, pp. 313-346. | Zbl | MR
[32] , On the hypotheses of Rabinowitz' periodic orbit theorems, J. Diff. Equations, Vol. 33, 1979, pp. 353-358. | Zbl | MR
[33] , Kuznecov sum formulae and Szegö limit formulae on manifolds, Comm. Partial Diff. Equations, Vol. 17, 1992, pp. 221-260. | Zbl | MR






