@article{AIHPA_1996__65_1_15_0,
author = {Gannon, Terry},
title = {The classification of $SU(3)$ modular invariants revisited},
journal = {Annales de l'I.H.P. Physique th\'eorique},
pages = {15--55},
year = {1996},
publisher = {Gauthier-Villars},
volume = {65},
number = {1},
mrnumber = {1407165},
zbl = {0919.17019},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1996__65_1_15_0/}
}
Gannon, Terry. The classification of $SU(3)$ modular invariants revisited. Annales de l'I.H.P. Physique théorique, Tome 65 (1996) no. 1, pp. 15-55. https://www.numdam.org/item/AIHPA_1996__65_1_15_0/
[1] , The classification of affine SU(3) modular invariant partition functions, Commun. Math. Phys., Vol. 161, 1994, pp. 233-264. | Zbl | MR
[2] and , Naturality in conformal field theory, Nucl. Phys., Vol. B313, 1989, pp. 16-40. | MR
[3] , Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. | Zbl | MR
[4] and , Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math., Vol. 53, 1984, pp. 125-264. | Zbl | MR
[5] and , Modular transformations of SU(N) affine characters and their commutant, Commun. Math. Phys., Vol. 127, 1990, pp. 617-636. | Zbl | MR
[6] , and , Modular invariants for affine Su(3) theories at prime heights, Comm. Math. Phys., Vol. 133, 1990, pp. 305-322. | Zbl | MR
[7] , WZW commutants, lattices, and level-one partition functions, Nucl. Phys., Vol. B396, 1993, pp. 708-736. | MR
[8] , and , Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys., Vol. B402, 1993, pp. 693-708. | Zbl | MR
[9] , Automorphisms of the affine SU(3) fusion rules, Commun. Math. Phys., Vol. 160, 1994, pp. 475-492. | Zbl | MR
[10] and , Simple factors in the Jacobian of a Fermat curve, Can. J. Math., Vol. XXX, 1978, pp. 1183-1205. | Zbl | MR
[11] , Classification of the local extensions of the SU(3) chiral current algebra, Vienna preprint ESI-19, 1993. | MR
[12] , and , su(3)k fusion coefficients, Mod. Phys. Lett., Vol. A7, 1992, pp. 3255-3265. | Zbl | MR
[13] and , On the classification of diagonal coset modular invariants, Commun. Math. Phys., Vol. 173, 1995, pp. 175-198. | Zbl | MR
[14] and , The affine Weyl group and modular invariant partition functions, Phys. Lett., Vol. B205, 1988, pp. 281-284. | MR
[15] , String characters from Kac-Moody automorphisms, Nucl. Phys., Vol. B288, 1987, pp. 628-648. | MR
[16] and , GN ⊗ GN+L conformal field theories and their modular invariant partition functions, Int. J. Mod. Phys., Vol. A4, 1989, pp. 897-920. | Zbl
[17] , Towards a classification of SU(2) ⊕ ... ⊕ SU(2) modular invariant partition functions, J. Math. Phys., Vol. 36, 1995, pp. 675-706. | Zbl | MR
[18] , The theory of matrices, Vol. II, Chesea Publishing Co., New York, 1964.
[19] and , Remarks on Galois symmetry in RCFT, Phys. Lett., Vol. B323, 1994, pp. 316-321.
[20] , Groupes et Algèbres de Lie, Chapitre IV-VI, Hermann, Paris, 1968. | MR
[21] and , The low level modular invariant partition functions or rank 2 algebras, Int. J. Mod. Phys., Vol. A9, 1994, pp. 2667-2686. | Zbl | MR
[22] and , Simple currents versus orbifolds with discrete torsion a complete classification, Nucl. Phys., Vol. B411, 1994, pp. 97-121. | Zbl | MR
[23] and , The rank-four heterotic modular invariant partition functions, Nucl. Phys., Vol. B425, 1994, pp. 319-342. | Zbl | MR
[24] , Meromorphic c = 24 conformal field theories, Commun. Math. Phys., Vol. 153, 1993, pp. 159-185; , Orbifold construction and the classification of self-dual c = 24 conformal field theories, (hep-th/9403088). | Zbl | MR
[25] , Symmetries of Kac-Peterson modular matrices of affine algebras, Invent. Math., Vol. 122, 1995, pp. 341-357. | Zbl | MR
[26] , and , Automorphism modular invariants of current algebras, (hep-th/9503141).
[27] , and , Galois modular invariants of WZW models, Nucl. Phys., Vol. B437, 1995, pp. 667. | Zbl | MR
[28] , and , The A-D-E classification of A(1)1 and minimal conformal field theories, Commun. Math. Phys., Vol. 113, 1987, pp. 1-26. | Zbl | MR
[29] , Kac-Peterson, Perron-Frobenius, and the Classification of Conformal Field Theories (q-alg/9510026).






