@article{AIHPA_1990__52_3_237_0,
author = {Buchholz, Detlev and Porrmann, Martin},
title = {How small is the phase space in quantum field theory ?},
journal = {Annales de l'I.H.P. Physique th\'eorique},
pages = {237--257},
year = {1990},
publisher = {Gauthier-Villars},
volume = {52},
number = {3},
mrnumber = {1057446},
zbl = {0719.46044},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1990__52_3_237_0/}
}
TY - JOUR AU - Buchholz, Detlev AU - Porrmann, Martin TI - How small is the phase space in quantum field theory ? JO - Annales de l'I.H.P. Physique théorique PY - 1990 SP - 237 EP - 257 VL - 52 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1990__52_3_237_0/ LA - en ID - AIHPA_1990__52_3_237_0 ER -
Buchholz, Detlev; Porrmann, Martin. How small is the phase space in quantum field theory ?. Annales de l'I.H.P. Physique théorique, Tome 52 (1990) no. 3, pp. 237-257. https://www.numdam.org/item/AIHPA_1990__52_3_237_0/
[1] and , When Does a Quantum Field Theory Describe Particles? Commun. Math. Phys., Vol. 1, 1965, pp. 308-320. | Zbl | MR
[2] and , Causal Independence and the Energy-Level Density of States in Local Quantum Field Theory, Commun. Math. Phys., Vol. 106, 1986, pp. 321-344. | Zbl | MR
[3] , and , Nuclear Maps and Modular Structures II: Applications to Quantum Field Theory (to appear in Commun. Math. Phys.). | Zbl | MR
[4] and , Unpublished manuscript, 1979.
Cf. also: , Local Relativistic Quantum Physics, Physica, Vol. 124 A, 1984, pp. 357-364. | MR
[5] , Locally Convex Spaces, Stuttgart: Teubner 1981, Chapter 18. | Zbl | MR
[6] , Energie und Präparierbarkeit von Zuständen in der lokalen Quantenfeldtheorie, Diplomarbeit, Hamburg, 1987.
[7] and , Standard and Split Inclusions of von Neumann Algebras, Invent. Math., Vol. 75, 1984, pp. 493-536. | Zbl | MR
[8] , , and , Convergence of Local Charges and Continuity Properties of W*-Inclusions, Commun. Math. Phys., Vol. 110, 1987, pp. 325-348. | Zbl | MR
[9] and , The λ(φ4)2 Quantum Field Theory Without Cutoffs, III. The physical vacuum, Acta Math., Vol. 125, 1970, pp. 203-267. | MR
[10] , Ein verschärftes Nuklearitätskriterium in der lokalen Quantenfeldtheorie, Diplomarbeit, Hamburg, 1988.
[11] , A Lattice of von Neumann Algebras Associated with the Quantum Theory of a Free Bose Field, J. Math. Phys., Vol. 4, 1963, pp. 1343-1362. | Zbl | MR
[12] and , On the Nuclearity Condition for Massless Fields, Lett. Math. Phys., Vol. 13, 1987, pp. 313-323. | Zbl | MR
[13] and , Methods of Modern Mathematical Physics II, Fourier Analysis, Self-Adjointness, New York-San Francisco-London, Academic Press, 1975. | Zbl | MR
[14] , Theory of Operator Algebras I, New York-Heidelberg-Berlin, Springer-Verlag, 1979. | Zbl | MR
[15] , and , The Universal Structure of Local Algebras, Commun. Math. Phys., Vol. 111, 1987, pp. 123-135. | Zbl | MR
[16] and , On the Existence of Equilibrium States in Local Quantum Field Theory, Commun. Math. Phys., Vol. 121, 1989, pp. 255-270. | Zbl | MR
[17] and , Local Algebras of Observables and Pointlike Localized Fields, Commun. Math. Phys., Vol. 80, 1981, pp. 555-561. | Zbl | MR
[18] and , Quantum Fields as Pointlike Localized Objects, Math. Nachr., Vol. 125, 1986, pp. 259-274. | Zbl | MR
[19] and , Postulates of Quantum Field Theory, J. Math. Phys., Vol. 3, 1962, pp. 248-256. | Zbl | MR
[20] , On Particles, Infraparticles, and the Problem of Asymptotic Completeness, In VIIIth International Congress on Mathematical Physics, Marseille, 1986. Singapore : World Scientific, 1987. | MR
[21] , and , The Vacuum State in Quantum Field Theory, Nuovo Cimento, Vol. 29, 1963, pp. 148-162. | Zbl | MR





