@article{AIHPA_1971__14_2_179_0,
author = {Tilgner, Hans},
title = {A class of {Lie} and {Jordan} algebras realized by means of the canonical commutation relations},
journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
pages = {179--188},
year = {1971},
publisher = {Gauthier-Villars},
volume = {14},
number = {2},
mrnumber = {289594},
zbl = {0211.35604},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1971__14_2_179_0/}
}
TY - JOUR AU - Tilgner, Hans TI - A class of Lie and Jordan algebras realized by means of the canonical commutation relations JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1971 SP - 179 EP - 188 VL - 14 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1971__14_2_179_0/ LA - en ID - AIHPA_1971__14_2_179_0 ER -
%0 Journal Article %A Tilgner, Hans %T A class of Lie and Jordan algebras realized by means of the canonical commutation relations %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1971 %P 179-188 %V 14 %N 2 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPA_1971__14_2_179_0/ %G en %F AIHPA_1971__14_2_179_0
Tilgner, Hans. A class of Lie and Jordan algebras realized by means of the canonical commutation relations. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 14 (1971) no. 2, pp. 179-188. https://www.numdam.org/item/AIHPA_1971__14_2_179_0/
[1] , A class of solvable Lie groups and their relation to the canonical formalism. Ann. Inst. H. Poincaré, Section A : Physique théorique, t. 13, n° 2, 1970. | MR | Numdam
[2] , A spectrum generating nilpotent group for the relativistic free particle. Ann. Inst. H. Poincaré, Section A : Physique théorique, t. 13, n° 2, 1970. | MR | Numdam
[3] , Quantized differential forms. Topology, t. 7, 1968, p. 147-172. | Zbl | MR
[4] , The exponential representation of canonical matrices. Am. J. Math., t. 61, 1939, p. 897-911. | Zbl | MR
[5] , Jordan algebras and their applications. University of Minnesota notes, Minneapolis, 1962. | Zbl
[6] , Gruppen und Lie-Algebren von rationalen Funktionen. Math. Z., t. 109, 1969, p. 349-392. | Zbl | MR
[7] , An elementary approach to bounded symmetric domains. Rice University, Houston, Texas, 1969. | Zbl | MR
[8] , On angular momentum, In Quantum theory of angular momentum. Edited by L. C. Biedenharn, H. van Dam, Academic Press, New York, 1965. | MR
[9] , Representation of group generators by boson or fermion operators. Application to spin perturbation. Helv. Phys. Acta, t. 39, 1966, p. 463-465.
[10] and , Realizations of Lie algebras by rational functions of canonical variables. In « Proceedings of the IX. Internationale Universitätswochen für Kernphysik, 1970 in Schladming, Austria ». Springer Wien, to appear, 1970. | Zbl
[11] , Symmetric spaces, I : General theory. Benjamin New York, 1969. | Zbl | MR
[12] , Symmetric spaces, II : Compact spaces and classification. Benjamin, New York, 1969. | Zbl | MR
[13] , Algebra. Addison-Wesley, Reading Mass, 1965. | Zbl | MR
[14] , The construction and study of certain important algebras. The International Society of Japan, Tokio, 1955. | Zbl | MR





