@article{AIHPA_1967__7_4_353_0,
author = {Flamand, G.},
title = {On the {Regge} symmetries of the $3j$ symbols of $SU \, (2)$},
journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
pages = {353--366},
year = {1967},
publisher = {Gauthier-Villars},
volume = {7},
number = {4},
mrnumber = {223139},
zbl = {0241.20035},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1967__7_4_353_0/}
}
TY - JOUR AU - Flamand, G. TI - On the Regge symmetries of the $3j$ symbols of $SU \, (2)$ JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1967 SP - 353 EP - 366 VL - 7 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1967__7_4_353_0/ LA - en ID - AIHPA_1967__7_4_353_0 ER -
%0 Journal Article %A Flamand, G. %T On the Regge symmetries of the $3j$ symbols of $SU \, (2)$ %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1967 %P 353-366 %V 7 %N 4 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPA_1967__7_4_353_0/ %G en %F AIHPA_1967__7_4_353_0
Flamand, G. On the Regge symmetries of the $3j$ symbols of $SU \, (2)$. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 7 (1967) no. 4, pp. 353-366. https://www.numdam.org/item/AIHPA_1967__7_4_353_0/
[1] , Nuovo Cim., t. 10, 1958, p. 296.
[2] , unpublished, 1952. U. S. Atom. Energy Comm. NYO-3071 (Reprinted in Quantum Theory of Angular Momentum, edited by L. C. Biedenharn and H.Van Dam. Academic Press, 1965).
, Rev. Mod. Phys., t. 34, 1962, p. 829. Some acquaintance with these beautiful papers is expected from the reader. | Zbl | MR
[4] , J. Math. Phys., t. 7, 1966, p. 612. It is proved in this paper that the 3j symbols of any compact group do have the class I symmetries except when the three representations are equivalent. In that case a general criterion for their existence and a counter example are given. | Zbl | MR
[5] Another instance of this property can be found in A. J. DRAGT, J. Math. Phys., t. 6, 1965, p. 533, section 6 B, in a somewhat different context though.
[7] , Orsay preprint, TH/138.
[8] The Lie algebra SO*(2n) , is described in, Differential Geometry and Symmetric Spaces, Academic Press, 1962, p. 341.





