Given a completely bounded map from an operator space into a von Neumann algebra (or merely a unital dual algebra) , we define to be -semidiscrete if for any operator algebra , the tensor operator is bounded from into , with norm less than . We investigate this property and characterize it by suitable approximation properties, thus generalizing the Choi-Effros characterization of semidiscrete von Neumann algebras. Our work is an extension of some recent work of Pisier on an analogous generalization of -nuclearity to operators. Having in mind the equivalence “ is nuclear semidiscrete”, when is a -algebra, we then study the relationships between the nuclearity of an operator and the semidiscreteness of its decomposable norm on operators between -algebras. Lastly, we apply some of our techniques to find new properties of Haagerup’s decomposable norm on operators between -algebras.
Étant donnée une application complètement bornée d’un espace d’opérateurs dans une algèbre de von Neumann (ou simplement une algèbre duale unifère) , on dit que est -semi-discrète si pour toute algèbre d’opérateurs , le produit tensoriel d’opérateurs est borné de dans , avec une norme inférieure ou égale à . Nous étudions cette propriété et la caractérisons notamment par des propriétés d’approximation appropriées, qui généralisent la caractérisation des algèbres de von Neumann semi-discrètes due à Choi-Effros. Notre travail est une extension de travaux récents de Pisier sur une notion comparable de -nucléarité pour les applications linéaires. Ayant à l’esprit l’équivalence “ est nucléaire est semi-discrète” valable pour une -algèbre , nous étudions les relations qui existent entre la nucléarité d’une application linéaire et le caractère semi-discret de son biadjoint. Enfin nous obtenons, grâce à certaines de nos techniques, de nouvelles propriétés de la norme de Haagerup pour les opérateurs décomposables entre -algèbres.
@article{AIF_1999__49_6_1869_0,
author = {Le Merdy, Christian},
title = {Finite rank approximation and semidiscreteness for linear operators},
journal = {Annales de l'Institut Fourier},
pages = {1869--1901},
year = {1999},
publisher = {Association des Annales de l'Institut Fourier},
volume = {49},
number = {6},
doi = {10.5802/aif.1741},
mrnumber = {2001b:46092},
zbl = {0989.46033},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1741/}
}
TY - JOUR AU - Le Merdy, Christian TI - Finite rank approximation and semidiscreteness for linear operators JO - Annales de l'Institut Fourier PY - 1999 SP - 1869 EP - 1901 VL - 49 IS - 6 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1741/ DO - 10.5802/aif.1741 LA - en ID - AIF_1999__49_6_1869_0 ER -
%0 Journal Article %A Le Merdy, Christian %T Finite rank approximation and semidiscreteness for linear operators %J Annales de l'Institut Fourier %D 1999 %P 1869-1901 %V 49 %N 6 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1741/ %R 10.5802/aif.1741 %G en %F AIF_1999__49_6_1869_0
Le Merdy, Christian. Finite rank approximation and semidiscreteness for linear operators. Annales de l'Institut Fourier, Tome 49 (1999) no. 6, pp. 1869-1901. doi: 10.5802/aif.1741
[1] and , C*-norms and slice maps, J. London Math. Soc., 22 (1980), 127-138. | Zbl | MR
[2] , The standard dual of an operator space, Pacific J. Math., 153 (1992), 15-30. | Zbl | MR
[3] and , Tensor products of operator spaces, J. Funct. Anal., 99 (1991), 262-292. | Zbl | MR
[4] and , Injectivity and operator spaces, J. Funct. Anal., 24 (1977), 156-209. | Zbl | MR
[5] and , Nuclear C*-algebras and injectivity: the general case, Indiana Univ. Math. J., 26 (1977), 443-446. | Zbl | MR
[6] and , Nuclear C*-algebras and the approximation property, Amer. J. Math., 100 (1978), 61-79. | Zbl | MR
[7] and , Representations of completely bounded multilinear operators, J. Funct. Anal., 72 (1987), 151-181. | Zbl | MR
[8] , Classification of injective factors, Ann. Math., 104 (1976), 73-115. | Zbl | MR
[9] and , Lifting problems and local reflexivity for C*-algebras, Duke Math. J., 52 (1985), 103-128. | Zbl | MR
[10] and , Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J., 36 (1987), 257-276. | Zbl | MR
[11] and , Tensor products of operator algebras, Adv. Math., 25 (1977), 1-33. | Zbl | MR
[12] and , On approximation properties for operator spaces, International J. Math., 1 (1990), 163-187. | Zbl | MR
[13] and , On non-self-adjoint operator algebras, Proc. Amer. Soc., 110 (1990), 915-922. | Zbl | MR
[14] and , A new approach to operator spaces, Canadian Math. Bull., 34 (1991), 329-337. | Zbl | MR
[15] and , Operator convolution algebras: an approach to quantum groups, unpublished (1991).
[16] and , Mapping spaces and liftings for operator spaces, Proc. London Math. Soc., 69 (1994), 171-197. | Zbl | MR
[17] , Decomposition of completely bounded maps on operator algebras, unpublished (1980). | Zbl
[18] , Injectivity and decomposition of completely bounded maps, in "Operator algebras and their connection with topology and ergodic theory", Springer Lecture Notes in Math., 1132 (1985), 170-222. | Zbl | MR
[19] , The ranges of certain convolution operators, Math. Scand., 15 (1964), 147-155. | Zbl | MR
[20] , Factorization theory for spaces of operators, Habilitationsschrift, Universitat Kiel, 1996.
[21] and , Factorization through matrix spaces for finite rank operators between C*-algebras, Duke Math. J., to appear. | Zbl
[22] , C*-nuclearity implies CPAP, Math. Nachr., 76 (1977), 203-212. | Zbl | MR
[23] , Commutants of unitaries in UHF algebras and functorial properties of exactness, J. Reine Angew. Math., 452 (1994), 39-77. | Zbl | MR
[24] , On nuclear C*-algebras, J. Funct. Analysis, 12 (1973), 157-176. | Zbl | MR
[25] , An operator space characterization of dual operator algebras, Amer. J. Math., 121 (1999), 55-63. | Zbl | MR
[26] , Completely bounded maps on C*-algebras and invariant operator ranges, Proc. Amer. Math. Soc., 86 (1982), 91-96. | Zbl | MR
[27] , Completely bounded maps and dilations, Pitman Research Notes in Math., 146, Longman, Wiley, New-York, 1986. | Zbl | MR
[28] and , Tensor products of non-self-adjoint operator algebras, Rocky Mountain J. Math., 20 (1990), 331-349. | Zbl | MR
[29] and , Multilinear maps and tensor norms on operator systems, J. Funct. Anal., 73 (1987), 258-276. | Zbl | MR
[30] , Exact operator spaces, in "Recent Advances in Operator Algebras - Orléans, 1992", Astérisque Soc. Math. France, 232 (1995), 159-187. | Zbl | MR | Numdam
[31] , An introduction to the theory of operator spaces, preprint (1997).
[32] , Subspaces of C*-algebras, J. Funct. Analysis, 76 (1988), 217-230. | Zbl | MR
[33] , Injective C*-algebras, Math. Proc. Cambridge Phil. Soc., 115 (1994), 489-500. | Zbl
[34] , Ein operatorwertiger Hahn-Banach satz, J. Funct. Analysis, 40 (1981), 127-150. | Zbl | MR
Cité par Sources :






