Let be a surface, let be a subsurface, and let be two positive integers. The inclusion of in gives rise to a homomorphism from the braid group with strings on to the braid group with strings on . We first determine necessary and sufficient conditions that this homomorphism is injective, and we characterize the commensurator, the normalizer and the centralizer of in . Then we calculate the commensurator, the normalizer and the centralizer of in for large surface braid groups.
Soient une surface, une sous-surface et deux entiers positifs. L’inclusion de dans induit un homomorphisme du groupe des tresses à brins de dans le groupe des tresses à brins de . Nous donnons dans un premier temps des conditions nécessaires et suffisantes pour que cet homomorphisme soit injectif et caractérisons le commensurateur, le normalisateur et le centralisateur de dans . Ensuite, nous déterminons le commensurateur, le normalisateur et le centralisateur de dans dans les cas où est un disque et où est large.
@article{AIF_1999__49_2_417_0,
author = {Paris, Luis and Rolfsen, Dale},
title = {Geometric subgroups of surface braid groups},
journal = {Annales de l'Institut Fourier},
pages = {417--472},
year = {1999},
publisher = {Association des Annales de l'Institut Fourier},
volume = {49},
number = {2},
doi = {10.5802/aif.1680},
mrnumber = {2000f:20059},
zbl = {0962.20028},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1680/}
}
TY - JOUR AU - Paris, Luis AU - Rolfsen, Dale TI - Geometric subgroups of surface braid groups JO - Annales de l'Institut Fourier PY - 1999 SP - 417 EP - 472 VL - 49 IS - 2 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1680/ DO - 10.5802/aif.1680 LA - en ID - AIF_1999__49_2_417_0 ER -
%0 Journal Article %A Paris, Luis %A Rolfsen, Dale %T Geometric subgroups of surface braid groups %J Annales de l'Institut Fourier %D 1999 %P 417-472 %V 49 %N 2 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1680/ %R 10.5802/aif.1680 %G en %F AIF_1999__49_2_417_0
Paris, Luis; Rolfsen, Dale. Geometric subgroups of surface braid groups. Annales de l'Institut Fourier, Tome 49 (1999) no. 2, pp. 417-472. doi: 10.5802/aif.1680
[Ar1] , Theorie der Zöpfe, Abh. Math. Sem. Hamburg, 4 (1926), 47-72. | JFM
[Ar2] , Theory of braids, Annals of Math., 48 (1946), 101-126. | Zbl | MR
[Bi1] , On braid groups, Comm. Pure Appl. Math., 22 (1969), 41-72. | Zbl | MR
[Bi2] , Braids, links, and mapping class groups, Annals of Math. Studies 82, Princeton University Press, 1973. | Zbl
[Bi3] , Mapping class groups of surfaces, Contemporary Mathematics, 78 (1988), 13-43. | Zbl | MR
[Br] , Cohomology of groups, Springer-Verlag, New York, 1982. | Zbl | MR
[Ch] , On the algebraic braid group, Annals of Math., 49 (1948), 654-658. | Zbl | MR
[Co] , Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math., 78 (1988), 167-206. | Zbl
[Ep] , Curves on 2-manifolds and isotopies, Acta Math., 115 (1966), 83-107. | Zbl | MR
[FaN] , , Configuration spaces, Math. Scand., 10 (1962), 111-118. | Zbl | MR
[FoN] , , The braid groups, Math. Scand., 10 (1962), 119-126. | Zbl | MR
[FaV] , , The braid groups of E2 and S2, Duke Math. J., 29 (1962), 243-258. | Zbl | MR
[FRZ] , , , Centralisers in the braid group and singular braid monoid, L'Enseignement Math., 42 (1996), 75-96. | Zbl | MR
[Ga] , The braid groups and other groups, Oxford Quart. J. Math., 20 (1969), 235-254. | Zbl | MR
[Go] , An exact sequence of braid groups, Math. Scand., 33 (1973), 69-82. | Zbl | MR
[GV] , , The word problem and its consequences for the braid groups and mapping class groups of the 2-sphere, Trans. Amer. Math. Soc., 131 (1968), 277-296. | Zbl | MR
[LS] , , Combinatorial group theory, Springer-Verlag, Berlin, 1977. | Zbl | MR
[Ro] , Braid subgroup normalisers and commensurators and induced representations, Invent. Math., 130 (1997), 575-587. | Zbl | MR
[Sc] , Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Phil. Soc., 68 (1970), 605-617. | Zbl | MR
[Se] , Arbres, amalgames, SL2, Astérisque, Soc. Math. France, 46 (1977). | Zbl | MR | Numdam
[Va] , Braid groups of compact 2-manifolds with elements of finite order, Trans. Amer. Math. Soc, 122 (1966), 81-97. | Zbl | MR
Cité par Sources :






