Let be a compact Kähler manifold with integral Kähler class and a holomorphic Hermitian line bundle whose curvature is the symplectic form of . Let be a Hamiltonian, and let be the Toeplitz operator with multiplier acting on the space . We obtain estimates on the eigenvalues and eigensections of as , in terms of the classical Hamilton flow of . We study in some detail the case when is an integral coadjoint orbit of a Lie group.
Soit une variété kählérienne compacte de classe de Kähler entière et un fibré en droites hermitien holomorphe, dont la courbure est la forme symplectique sur . Soit un hamiltonien et l’opérateur de Toeplitz de multiplicateur agissant sur l’espace . On obtient des estimations sur les valeurs et fonctions propres de lorsque en termes du flot hamiltonien associé a . On étudie en détail le cas où est une orbite coadjointe entière d’un groupe de Lie.
@article{AIF_1998__48_4_1189_0,
author = {Borthwick, David and Paul, Thierry and Uribe, Alejandro},
title = {Semiclassical spectral estimates for {Toeplitz} operators},
journal = {Annales de l'Institut Fourier},
pages = {1189--1229},
year = {1998},
publisher = {Association des Annales de l'Institut Fourier},
volume = {48},
number = {4},
doi = {10.5802/aif.1654},
mrnumber = {2000c:58048},
zbl = {0920.58059},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1654/}
}
TY - JOUR AU - Borthwick, David AU - Paul, Thierry AU - Uribe, Alejandro TI - Semiclassical spectral estimates for Toeplitz operators JO - Annales de l'Institut Fourier PY - 1998 SP - 1189 EP - 1229 VL - 48 IS - 4 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1654/ DO - 10.5802/aif.1654 LA - en ID - AIF_1998__48_4_1189_0 ER -
%0 Journal Article %A Borthwick, David %A Paul, Thierry %A Uribe, Alejandro %T Semiclassical spectral estimates for Toeplitz operators %J Annales de l'Institut Fourier %D 1998 %P 1189-1229 %V 48 %N 4 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1654/ %R 10.5802/aif.1654 %G en %F AIF_1998__48_4_1189_0
Borthwick, David; Paul, Thierry; Uribe, Alejandro. Semiclassical spectral estimates for Toeplitz operators. Annales de l'Institut Fourier, Tome 48 (1998) no. 4, pp. 1189-1229. doi: 10.5802/aif.1654
[1] , Une classe caractéristique intervenant dans les conditions de quantification, in V. P.MASLOV, Théorie des perturbations et Méthodes asymptotiques, Dunod, Paris (1972) 341-361.
[2] , General concept of quantization, Comm. Math. Phys., 40 (1975), 153-174.
[3] and , The quantized Baker's transformation, Annals of Physics, 180 (1989), 1-31. | Zbl | MR
[4] , , and , Toeplitz quantization of Kähler manifolds and gl(N), N → ∞ limits, Comm. Math. Phys., 165 (1994), 281-296. | Zbl | MR
[5] , , and , Legendrian distributions and non-vanishing of Poincaré series, Invent. Math., 122 (1995), 359-402. | Zbl
[6] , On the index of Toeplitz operators of several complex variables, Invent. Math., 50 (1979), 249-272. | Zbl | MR
[7] , Hypoelliptic operators with double characteristics and related pseudodifferentiel operators, Comm. Pure Appl. Math., 27 (1974), 585-639. | Zbl | MR
[8] and , The spectral theory of Toeplitz operators. Annals of Mathematics Studies No. 99, Princeton University Press, Princeton, New Jersey (1981). | Zbl | MR
[9] and , Sur la singularité des noyaux de Bergmann et de Szego, Astérisque, 34-35 (1976), 123-164. | Zbl | Numdam
[10] , , and , Quantization of Kähler manifolds. I: geometric interpretation of Berezin's quantization, J. Geom. Phys. 7 (1990) 45-62; Quantization of Kähler manifolds. II, Trans. Amer. Math. Soc., 337 (1993) 73-98; Quantization of Kähler manifolds. III, preprint (1993). | Zbl
[11] , and , Stochastic properties of the quantum Arnol'd cat in the classical limit, Comm. Math. Phys., 167 (1995), 471-509.
[12] , Enveloping Algebras, North-Holland, 1977.
[13] and , The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39-79. | Zbl | MR
[14] , Harmonic Analysis in Phase Space, Annals of Mathematics Studies 122, Princeton University Press, Princeton N.J. 1989. | Zbl | MR
[15] and , Quantum intrinsically degenerate and classical secular perturbation theory, preprint.
[16] , Symplectic spinors and partial differential equations. Coll. Inst. CNRS 237, Géométrie Symplectique et Physique Mathématique, 217-252. | Zbl | MR
[17] and , Geometric quantization and multiplicities of group representations, Invent. Math., 67 (1982), 515-538. | Zbl | MR
[18] and , Circular symmetry and the trace formula, Invent. Math., 96 (1989), 385-423. | Zbl | MR
[19] and , Quantization of linear maps-Fresnel diffraction by a periodic grating, Physica, D 1 (1980), 267-291.
[20] , The analysis of linear partial differential operators I-IV, Springer-Verlag, 1983-1985. | Zbl
[21] and , The semi-classical trace formula and propagation of wave packets, J. Funct. Analysis, 132, No.1 (1995), 192-249. | Zbl | MR
[22] and , On the pointwise behavior of semi-classical measures, Comm. Math. Phys., 175 (1996), 229-258. | Zbl | MR
[23] and , Weighted Weyl estimates near an elliptic trajectory, Revista Matemática Iberoamericana, 14 (1998), 145-165. | Zbl | MR
[24] , Autour de l'approximation semi-classique, Birkhauser 1987. | Zbl | MR
[25] and , Semiclassical spectra of gauge fields, J. Funct. Anal., 110 (1992), 1-46. | Zbl | MR
[26] , Large N limits as classical mechanics, Rev. Mod. Phys., 54 (1982), 407-435.
Cité par Sources :






