Given a compact connected Lie group . For a relatively compact -invariant domain in a Stein -homogeneous space, we prove that the automorphism group of is compact and if is semisimple, a proper holomorphic self mapping of is biholomorphic.
Soit un groupe de Lie connexe compact. Pour un domaine , -invariant et relativement compact dans un espace homogène de Stein , nous montrons que le groupe des automorphismes de est compact et si est semi-simple, une application holomorphe propre de est biholomorphe.
@article{AIF_1997__47_4_1101_0,
author = {Zhou, Xiang-Yu},
title = {On invariant domains in certain complex homogeneous spaces},
journal = {Annales de l'Institut Fourier},
pages = {1101--1115},
year = {1997},
publisher = {Association des Annales de l'Institut Fourier},
volume = {47},
number = {4},
doi = {10.5802/aif.1593},
mrnumber = {99a:32045},
zbl = {0881.32015},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1593/}
}
TY - JOUR AU - Zhou, Xiang-Yu TI - On invariant domains in certain complex homogeneous spaces JO - Annales de l'Institut Fourier PY - 1997 SP - 1101 EP - 1115 VL - 47 IS - 4 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1593/ DO - 10.5802/aif.1593 LA - en ID - AIF_1997__47_4_1101_0 ER -
%0 Journal Article %A Zhou, Xiang-Yu %T On invariant domains in certain complex homogeneous spaces %J Annales de l'Institut Fourier %D 1997 %P 1101-1115 %V 47 %N 4 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1593/ %R 10.5802/aif.1593 %G en %F AIF_1997__47_4_1101_0
Zhou, Xiang-Yu. On invariant domains in certain complex homogeneous spaces. Annales de l'Institut Fourier, Tome 47 (1997) no. 4, pp. 1101-1115. doi: 10.5802/aif.1593
[1] , , The Lefschetz theorem on hyperplane sections, Ann. of Math., 69 (1959), 713-717. | Zbl | MR
[2] , , Plurisubharmonic functions and the Kempf-Ness theorem, Bull. London Math. Soc., 25 (1993), 162-168. | Zbl | MR
[3] , Proper holomorphic mappings, Bull. Amer. Math. Soc., 10 (1984), 157-175. | Zbl | MR
[4] , On the automorphism group of a Stein manifold, Math. Ann., 266 (1983), 215-227. | Zbl | MR
[5] , Symmetric compact complex spaces, Arch. Math., 33 (1979), 49-56. | Zbl | MR
[6] , , Differential forms in algebraic topology, Springer-Verlag, New York, Heidelberg, Berlin, 1982. | Zbl | MR
[7] , , Invariant domains in complex symmetric spaces, J. reine angew. Math., 454 (1994), 97-118. | Zbl | MR
[8] , Proper holomorphic mappings. A survey, in Proceedings of the special year on several complex variables at Mittag-Leffler Institute, E. Fornaess ed., Princeton University Press, Princeton, 1993. | Zbl | MR
[9] , Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., 135 (1958), 263-273. | Zbl | MR
[10] , , , Connections, curvature, and cohomology, Academic Press, New York, London, 1972. | MR | Zbl
[11] , Geometric invariant theory on Stein space, Math. Ann., 289 (1991), 631-662. | Zbl | MR | EuDML
[12] , Equivariant holomorphic extensions of real analytic manifolds, Bull. Soc. Math. France., 121 (1993), 445-463. | Numdam | Zbl | MR | EuDML
[13] , , Invariant plurisubharmonic exhaustions and retractions, Manu. Math., 83 (1994), 19-29. | Zbl | MR | EuDML
[14] , , An equivariant version of Grauert's Oka principle, Invent. Math., 119 (1995), 317-346. | Zbl | MR | EuDML
[15] , Differential topology, Springer-Verlag, New York, Heidelberg, Berlin, 1976. | Zbl | MR
[16] , Topological methods in algebraic geometry, Springer-Verlag, New York, Heidelberg, Berlin, 1966. | Zbl | MR
[17] , An introduction to complex analysis in several variables, North-Holland, Amsterdam, 1966. | Zbl
[18] , Fibre bundles, McGraw-Hill, New York et al., 1966. | Zbl | MR
[19] , , Holomorphic functions of several variables, Walter de Gruyter, Berlin, New York, 1983. | Zbl | MR
[20] , Intrinsic distances, measures, and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357-416. | Zbl | MR
[21] , Geomtrische Methoden in der Invariantentheri, Braunschweig-Wiesbaden, Vieweg, 1985. | MR | Zbl
[22] , Séries de Laurent des functions holomorphes dans la complexification d'un espace symétrique compact, Ann. Scient. Éc. Norm. Sup., 11 (1978), 167-210. | Numdam | Zbl | MR | EuDML
[23] , A basic course in algebraic topology, Springer-Verlag, New York, Heidelberg, Berlin, 1991. | Zbl | MR
[24] , On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., 90 (1959), 272-280. | Zbl | MR
[25] , Rigiditity of holomorphic self-mappings and the automorphism groups of hyperbolic Stein spaces, Math. Ann., 266 (1984), 433-447. | Zbl | EuDML | MR
[26] , On the homology group of Stein spaces, Invent. Math., 2 (1967), 377-385. | Zbl | MR | EuDML
[27] , Several complex variables, University of Chicago, Chicago, 1971. | Zbl | MR
[28] , Topology of transitive transformation groups, Fizmatlit Publishing Company, Moscow, 1994 (Russian). | Zbl | MR
[29] , On proper holomorphic mappings of strictly psedoconvex domains, Siberian Math. J., 15 (1974), 909-917 (Russian). | Zbl | MR
[30] , , Eigentlische holomorphe Abbildungen, Math. Z., 73 (1960), 159-189. | Zbl | MR | EuDML
[31] , Topology of fibre bundles, Princeton University Press, Princeton, 1951. | Zbl | MR
[32] , Lie groups, Lie algebras, and their representations, Springer-Verlag, New York, Heidelberg, Berlin, 1984. | MR | Zbl
[33] , Spaces of constant curvature, Publish or Perish, Boston, 1974. | Zbl | MR
[34] , On orbit connectedness, orbit convexity, and envelopes of holomorphy, Izvestija RAN., Ser. Math., 58 (1994), 196-205. | Zbl | MR
Cité par Sources :





