We give a classification of finite group actions on a surface giving rise to quotients, from the point of view of their fixed points. It is shown that except two cases, each such group gives rise to a unique type of fixed point set.
Nous donnons une classification des actions de groupes finis sur une surface ayant des quotients , du point de vue des points fixes. Il est montré qu’à part deux cas, chacun des groupes donne un unique type de points fixes.
@article{AIF_1996__46_1_73_0,
author = {Xiao, Gang},
title = {Galois covers between $K3$ surfaces},
journal = {Annales de l'Institut Fourier},
pages = {73--88},
year = {1996},
publisher = {Association des Annales de l'Institut Fourier},
volume = {46},
number = {1},
doi = {10.5802/aif.1507},
mrnumber = {97b:14047},
zbl = {0845.14026},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1507/}
}
TY - JOUR AU - Xiao, Gang TI - Galois covers between $K3$ surfaces JO - Annales de l'Institut Fourier PY - 1996 SP - 73 EP - 88 VL - 46 IS - 1 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1507/ DO - 10.5802/aif.1507 LA - en ID - AIF_1996__46_1_73_0 ER -
Xiao, Gang. Galois covers between $K3$ surfaces. Annales de l'Institut Fourier, Tome 46 (1996) no. 1, pp. 73-88. doi: 10.5802/aif.1507
[D] , Integral quadratic forms : applications to algebraic geometry, Seminaire Bourbaki, 611 (1983). | Zbl | MR | Numdam
[M] , Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., 94 (1988), 183-221. | Zbl | MR
[N] , Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc., 38 (1980), 71-137. | Zbl
Cité par Sources :





