Search and download archives of mathematical journals

 
 
  Table of contents for this issue | Previous article | Next article
Manin, Yu. I.
Some remarks on Koszul algebras and quantum groups. Annales de l'institut Fourier, 37 no. 4 (1987), p. 191-205
Full text djvu | pdf | Reviews MR 89e:16022 | Zbl 0625.58040 | 4 citations in Numdam

stable URL: http://www.numdam.org/item?id=AIF_1987__37_4_191_0

Lookup this article on the publisher's site

Abstract

The category of quadratic algebras is endowed with a tensor structure. This allows us to construct a class of Hopf algebras studied recently under the name of quantum (semi) groups.

Bibliography

[1] V. G. DRINFELD, Quantum groups, Zap. Naučn. sem. LOMI, vol. 155 (1986), 18-49 (in russian).  MR 88f:17017 |  Zbl 0617.16004
[2] S. B. PRIDDY, Koszul resolutions, Trans. AMS, 152-1 (1970), 39-60.  MR 42 #346 |  Zbl 0261.18016
[3] C. LÖFWALL, On the subalgebra generated by one-dimensional elements in the Yoneda Ext-algebra, Springer Lecture Notes in Math., vol. 1183 (1986), 291-338.  MR 88f:16030 |  Zbl 0595.16020
[4] V. V. LYUBASHENKO, Hopf algebras and vector-symmetries, Uspekhi Mat. Nauk, 41-5 (1986), 185-186 (in russian).  MR 88c:58007 |  Zbl 0649.16008
[5] P. DELIGNE, J. MILNE, Tannakian categories, Springer lecture Notes in Math., vol. 900 (1982), 101-228.  MR 84m:14046 |  Zbl 0477.14004
[6] A. A. BEILINSON, V. GINSBURG, Mixed categories, Ext-duality and representations, 1986, preprint.
[7] V. G. DRINFELD, On quadratic commutation relations in the quasiclassic limit, in : Mat. Fizika i Funke. Analiz, Kiev, Naukova Dumka (1986), 25-33 (in russian).  MR 89c:58048 |  Zbl 0783.58025
Copyright Cellule MathDoc 2014 | Credit | Site Map