Manin, Yu. I.
Some remarks on Koszul algebras and quantum groups
Annales de l'institut Fourier, Tome 37 (1987) no. 4 , p. 191-205
Zbl 0625.58040 | MR 89e:16022 | 5 citations dans Numdam
doi : 10.5802/aif.1117
URL stable : http://www.numdam.org/item?id=AIF_1987__37_4_191_0

La catégorie des algèbres quadratiques est munie d’une structure tensorielle. Ceci permet de construire des algèbres de Hopf du type “(semi) groupes quantiques”.
The category of quadratic algebras is endowed with a tensor structure. This allows us to construct a class of Hopf algebras studied recently under the name of quantum (semi) groups.

Bibliographie

[1] V. G. Drinfeld, Quantum groups, Zap. Naučn. sem. LOMI, vol. 155 (1986), 18-49 (in russian). MR 88f:17017 | Zbl 0617.16004

[2] S. B. Priddy, Koszul resolutions, Trans. AMS, 152-1 (1970), 39-60. MR 42 #346 | Zbl 0261.18016

[3] C. Löfwall, On the subalgebra generated by one-dimensional elements in the Yoneda Ext-algebra, Springer Lecture Notes in Math., vol. 1183 (1986), 291-338. MR 88f:16030 | Zbl 0595.16020

[4] V. V. Lyubashenko, Hopf algebras and vector-symmetries, Uspekhi Mat. Nauk, 41-5 (1986), 185-186 (in russian). MR 88c:58007 | Zbl 0649.16008

[5] P. Deligne, J. Milne, Tannakian categories, Springer lecture Notes in Math., vol. 900 (1982), 101-228. MR 84m:14046 | Zbl 0477.14004

[6] A. A. Beilinson, V. Ginsburg, Mixed categories, Ext-duality and representations, 1986, preprint.

[7] V. G. Drinfeld, On quadratic commutation relations in the quasiclassic limit, in : Mat. Fizika i Funke. Analiz, Kiev, Naukova Dumka (1986), 25-33 (in russian). MR 89c:58048 | Zbl 0783.58025