Let be a reductive complex algebraic group, and let denote the algebra of invariant polynomial functions on the direct sum of copies of the representations space of . There is a smallest integer such that generators and relations of can be obtained from those of by polarization and restitution for all . We bound and the degrees of generators and relations of , extending results of Vust. We apply our techniques to compute the invariant theory of binary cubics.
Soit un groupe algébrique complexe réductif et l’algèbre des polynômes -invariants sur la somme directe de copies de l’espace de représentation de . Il existe un nombre entier minimal tel que les générateurs et relations de puissent s’obtenir à partir de ceux de par polarisation et restitution pour chaque . On borne et les degrés des générateurs et relations de , en étendant des résultats de Vust. Ces techniques sont alors appliquées au calcul des invariants de plusieurs formes binaires cubiques.
@article{AIF_1987__37_3_191_0,
author = {Schwarz, Gerald W.},
title = {On classical invariant theory and binary cubics},
journal = {Annales de l'Institut Fourier},
pages = {191--216},
year = {1987},
publisher = {Imprimerie Louis-Jean},
address = {Gap},
volume = {37},
number = {3},
doi = {10.5802/aif.1104},
mrnumber = {89h:14036},
zbl = {0597.14011},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1104/}
}
TY - JOUR AU - Schwarz, Gerald W. TI - On classical invariant theory and binary cubics JO - Annales de l'Institut Fourier PY - 1987 SP - 191 EP - 216 VL - 37 IS - 3 PB - Imprimerie Louis-Jean PP - Gap UR - https://www.numdam.org/articles/10.5802/aif.1104/ DO - 10.5802/aif.1104 LA - en ID - AIF_1987__37_3_191_0 ER -
Schwarz, Gerald W. On classical invariant theory and binary cubics. Annales de l'Institut Fourier, Tome 37 (1987) no. 3, pp. 191-216. doi: 10.5802/aif.1104
[1] , Singularités rationnelles et quotients par les groupes réductifs, Inv. Math., 88 (1987), 65-68. | Zbl | MR
[2] and , The Algebra of Invariants, Cambridge University Press, Cambridge, 1903. | JFM
[3] and , Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math., 13 (1974), 115-175. | Zbl | MR
[4] , Über die Glattheit von Quotientenabbildungen, Manuscripta Math., 56 (1986), 419-427. | Zbl | MR
[5] , Geometrische Methoden in der Invariantentheorie, Viehweg, Braunschweig, 1984. | Zbl | MR
[6] , Eine Klassifikation bestimmter Untergruppen kompakter zusammenhängender Liegruppen, Comm. in Alg., 3 (1975), 691-737. | Zbl
[7] , Algebra, Addison-Wesley, Reading, 1965. | Zbl | MR
[8] and , A generalization of the Chevalley restriction theorem, Duke Math. J., 46 (1979), 487-496. | Zbl | MR
[9] , Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1979. | Zbl | MR
[10] , A Primer of Invariant Theory, Brandeis Lecture Notes 1, Department of Mathematics, Brandeis University, 1982.
[11] , Representations of simple Lie groups with regular rings of invariants, Inv. Math., 49 (1978), 167-191. | Zbl | MR
[12] , Representations of simple Lie groups with a free module of covariants, Inv. Math., 50 (1978), 1-12. | Zbl | MR
[13] , Invariant theory of G2, Bull. Amer. Math. Soc., 9 (1983), 335-338. | Zbl | MR
[14] , Invariant theory of G2 and Spin7, to appear.
[15] , Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc., 1 (1979), 475-511. | Zbl | MR
[16] , Combinatorics and invariant theory, Proc. Symposia Pure Math., Vol. 34, Amer. Math. Soc., Providence, R.I., 1979, 345-355. | Zbl | MR
[17] , Das vollständige Formensystem dreier cubischen binären Formen, Math. Ann., 45 (1894), 207-234. | JFM
[18] , Sur la théorie des invariants des groupes classiques, Ann. Inst. Fourier, 26-1 (1976), 1-31. | Zbl | MR | Numdam
[19] , Sur la théorie classique des invariants, Comm. Math. Helv., 52 (1977), 259-295. | Zbl | MR
[20] , Foncteurs polynomiaux et théorie des invariants, in Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin, Springer Lecture Notes, No. 725, Springer Verlag, New York, 1980, pp. 330-340. | Zbl | MR
[21] , The Classical Groups, 2nd edn., Princeton Univ. Press, Princeton, N.J., 1946.
Cité par Sources :





