We study a method of approximating representations of the group by those of the group . As a consequence we establish a version of a theorem of DeLeeuw for Fourier multipliers of that applies to the “restrictions” of a function on the dual of to the dual of .
On étudie un processus d’approximation des représentations du groupe par celles du groupe . Comme conséquence on établit une version d’un théorème de DeLeeuw pour les multiplicateurs de Fourier de relatif aux “restrictions” d’une fonction sur le dual de au dual de .
@article{AIF_1984__34_2_111_0,
author = {Dooley, Anthony H. and Gaudry, Garth I.},
title = {An extension of {deLeeuw{\textquoteright}s} theorem to the $n$-dimensional rotation group},
journal = {Annales de l'Institut Fourier},
pages = {111--135},
year = {1984},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {34},
number = {2},
doi = {10.5802/aif.967},
mrnumber = {86a:43002},
zbl = {0523.43002},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.967/}
}
TY - JOUR AU - Dooley, Anthony H. AU - Gaudry, Garth I. TI - An extension of deLeeuw’s theorem to the $n$-dimensional rotation group JO - Annales de l'Institut Fourier PY - 1984 SP - 111 EP - 135 VL - 34 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.967/ DO - 10.5802/aif.967 LA - en ID - AIF_1984__34_2_111_0 ER -
%0 Journal Article %A Dooley, Anthony H. %A Gaudry, Garth I. %T An extension of deLeeuw’s theorem to the $n$-dimensional rotation group %J Annales de l'Institut Fourier %D 1984 %P 111-135 %V 34 %N 2 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.967/ %R 10.5802/aif.967 %G en %F AIF_1984__34_2_111_0
Dooley, Anthony H.; Gaudry, Garth I. An extension of deLeeuw’s theorem to the $n$-dimensional rotation group. Annales de l'Institut Fourier, Tome 34 (1984) no. 2, pp. 111-135. doi: 10.5802/aif.967
[1] , Sommes de Riesz et multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier, Grenoble, 24, 1 (1974), 149-172. | Zbl | MR | Numdam
[2] and , Contractions of rotation groups and their representations. To appear, Math. Proc. Camb. Phil. Soc. | Zbl
[3] and , Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
[4] and , Abstract harmonic analysis, Vol. II, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1970.
[5] , Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972. | Zbl | MR
[6] and , The Plancherel formula for group extensions, Ann. Sci. Ecole Norm. Sup., 5 (1972), 459-516. | Zbl | MR | Numdam
[7] , On Lp multipliers, Ann. of Math., (2), 81 (1965), 364-379. | Zbl | MR
[8] , Harmonic analysis on the group of rigid motions of the Euclidean plane, Studia Math., LXII (1978), 125-141. | Zbl | MR
[9] , Algèbres de Lie semi-simples complexes, W. A. Benjamin, Inc., New York, 1966. | Zbl | MR
Cité par Sources :






