For actions as in the title we associate a collection of rotation numbers. If one of them is sufficiently irrational then the action is conjugate (as an action) to either a linear action on a torus or to an action on a principal bundle over with orbits.
À une action au sens du titre, nous attachons une collection des nombres de rotation. Si l’un des nombres est suffisamment irrationnel, alors l’action est conjuguée (au sens d’une action) soit à une action linéaire sur un tore, soit à une action sur un fibré principal sur de fibre avec les orbites isomorphes à .
@article{AIF_1974__24_4_213_0,
author = {Tischler, David C. and Tischler, Rosamond W.},
title = {Topological conjugacy of locally free ${\bf R}^{n-1}$ actions on $n$-manifolds},
journal = {Annales de l'Institut Fourier},
pages = {213--227},
year = {1974},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {24},
number = {4},
doi = {10.5802/aif.539},
mrnumber = {52 #1726},
zbl = {0287.57016},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.539/}
}
TY - JOUR
AU - Tischler, David C.
AU - Tischler, Rosamond W.
TI - Topological conjugacy of locally free ${\bf R}^{n-1}$ actions on $n$-manifolds
JO - Annales de l'Institut Fourier
PY - 1974
SP - 213
EP - 227
VL - 24
IS - 4
PB - Institut Fourier
PP - Grenoble
UR - https://www.numdam.org/articles/10.5802/aif.539/
DO - 10.5802/aif.539
LA - en
ID - AIF_1974__24_4_213_0
ER -
%0 Journal Article
%A Tischler, David C.
%A Tischler, Rosamond W.
%T Topological conjugacy of locally free ${\bf R}^{n-1}$ actions on $n$-manifolds
%J Annales de l'Institut Fourier
%D 1974
%P 213-227
%V 24
%N 4
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.539/
%R 10.5802/aif.539
%G en
%F AIF_1974__24_4_213_0
Tischler, David C.; Tischler, Rosamond W. Topological conjugacy of locally free ${\bf R}^{n-1}$ actions on $n$-manifolds. Annales de l'Institut Fourier, Tome 24 (1974) no. 4, pp. 213-227. doi: 10.5802/aif.539
[1] , Foliations and Pseudogroups, American Journal of Mathematics, 87 (1965), 98-102. | Zbl | MR
[2] , Celestial Mechanics, Part II, W. A. Benjamin, New York, 1969. | Zbl
[3] , Thesis, " Conjugacy Problems for Rk Actions ", City University of New York, 1971.
[4] , An Introduction to Harmonic Analysis, John Wiley and Sons, New York, 1968. | Zbl | MR
[5] , The Linear Difference Equation of First Order for Angular Variables, Duke Mathematics Journal, 12 (1945), 445-449. | Zbl | MR
Cité par Sources :





