Mokhtar-Kharroubi, Mustapha; Chabi, Mohamed; Stefanov, Plamen
Scattering theory with two L 1 spaces : application to transport equations with obstacles
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6 : Tome 6 (1997) no. 3 , p. 511-523
Zbl 0907.47005 | MR 1610907
URL stable : http://www.numdam.org/item?id=AFST_1997_6_6_3_511_0

Bibliographie

[1] Stefanov (P.) .- Spectral and scattering theory for the linear Boltzmann equation in exterior domain, Math. Nachr. 137 (1988), pp. 63-77. MR 968987 | Zbl 0661.45004

[2] Mokhtar-Kharroubi (M.) .- Limiting Absorption Principles and Wave Operators on L1 (μ) Spaces: Applications to Transport Theory, J. Funct. Anal. 115 (1993), pp. 119-145. MR 1228144 | Zbl 0802.47041

[3] Kato (T.) .- Scattering theory with two Hilbert spaces, J. Funct. Anal. 1 (1967), pp. 342-369. MR 220097 | Zbl 0171.12303

[4] Birman (M.S.) .- A local criterion for the existence of wave operators, Izv. Akad. Nauk SSSR, 32 (1968), pp. 914-942. MR 248558 | Zbl 0169.16903

[5] Birman (M.S.) .- Scattering problems for differential operators with perturbation of the space, Izv. Akad. Nauk SSSR, 35 (1971), pp. 440-455. MR 291868 | Zbl 0236.47011

[6] Schechter (M.) .- A unified approach to scattering, J. Math. pures et appl. 53 (1974), pp. 373-396. MR 365183 | Zbl 0304.47010

[7] Hejtmanek (J.) . - Scattering theory of the linear Boltzmann operator, Comm. Math. Phys. 43 (1975), pp. 109-120. MR 381604 | Zbl 0309.47009

[8] Simon (B.) .- Existence of the scattering matrix for linearized Boltzmann equation, Comm. Math. Phys. 41 (1975), pp. 99-108. MR 401026

[9] Voigt (J.).- On the existence of the scattering operator for the linear Boltzmann equation, J. Math. Anal. Appl. 58 (1977), pp. 541-558. MR 449403 | Zbl 0372.47006