Propriétés combinatoires du bord d’un groupe hyperbolique
Séminaire de théorie spectrale et géométrie, Tome 32 (2014-2015) , pp. 73-96.

Le but de ce survol est de présenter les modules combinatoires récemment utilisés pour étudier les propriétés quasi-conformes des bords des groupes hyperboliques. Dans un premier temps, on rappellera quelques résultats et questions de rigidité bien connus qui ont motivés l’introduction de ces outils. Puis on définira les modules combinatoires et la propriété de Loewner combinatoire qui offrent une nouvelle approche pour résoudre des problèmes ouverts depuis longtemps. Enfin, on décrira des applications concrètes de ces outils à travers quelques résultats récents et questions ouvertes.

DOI : https://doi.org/10.5802/tsg.304
Classification : 20F67,  30L10
Mots clés : Bord d’un groupe hyperbolique, analyse quasi-conforme, modules combinatoires
@article{TSG_2014-2015__32__73_0,
     author = {Clais, Antoine},
     title = {Propri\'et\'es combinatoires du bord d'un groupe hyperbolique},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {73--96},
     publisher = {Institut Fourier},
     volume = {32},
     year = {2014-2015},
     doi = {10.5802/tsg.304},
     language = {fr},
     url = {www.numdam.org/item/TSG_2014-2015__32__73_0/}
}
Clais, Antoine. Propriétés combinatoires du bord d’un groupe hyperbolique. Séminaire de théorie spectrale et géométrie, Tome 32 (2014-2015) , pp. 73-96. doi : 10.5802/tsg.304. http://www.numdam.org/item/TSG_2014-2015__32__73_0/

[1] Beeker, Benjamin; Lazarovich, Nir Sphere boundaries of hyperbolic groups (2016) (https://arxiv.org/abs/1512.00866) | MR 3546458

[2] Benedetti, Riccardo; Petronio, Carlo Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992, pp. xiv+330 | Article | MR 1219310 | Zbl 0768.51018

[3] Bonk, Mario; Kleiner, Bruce Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math., Volume 150 (2002) no. 1, pp. 127-183 | Article | MR 1930885 | Zbl 1037.53023

[4] Bonk, Mario; Kleiner, Bruce Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol., Volume 9 (2005), pp. 219-246 | Article | MR 2116315 | Zbl 1087.20033

[5] Bourdon, Marc Mostow type rigidity theorems (to appear in Handbook of Group Actions)

[6] Bourdon, Marc Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geom. Funct. Anal., Volume 7 (1997) no. 2, pp. 245-268 | Article | MR 1445387 | Zbl 0876.53020

[7] Bourdon, Marc; Kleiner, Bruce Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn., Volume 7 (2013) no. 1, pp. 39-107 | Article | MR 3019076

[8] Bourdon, Marc; Pajot, Hervé Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc., Volume 127 (1999) no. 8, pp. 2315-2324 | Article | MR 1610912 | Zbl 0924.30030

[9] Bourdon, Marc; Pajot, Hervé Rigidity of quasi-isometries for some hyperbolic buildings, Comment. Math. Helv., Volume 75 (2000) no. 4, pp. 701-736 | Article | MR 1789183 | Zbl 0976.30011

[10] Bourdon, Marc; Pajot, Hervé Cohomologie l p et espaces de Besov, J. Reine Angew. Math., Volume 558 (2003), pp. 85-108 | Article | MR 1979183 | Zbl 1044.20026

[11] Bowditch, Brian H. Cut points and canonical splittings of hyperbolic groups, Acta Math., Volume 180 (1998) no. 2, pp. 145-186 | Article | MR 1638764 | Zbl 0911.57001

[12] Bucher, Michelle; Burger, Marc; Iozzi, Alessandra A dual interpretation of the Gromov-Thurston proof of Mostow rigidity and volume rigidity for representations of hyperbolic lattices, Trends in harmonic analysis (Springer INdAM Ser.) Volume 3, Springer, Milan, 2013, pp. 47-76 | Article | MR 3026348 | Zbl 1268.53056

[13] Cannon, James W.; Swenson, Eric L. Recognizing constant curvature discrete groups in dimension 3, Trans. Amer. Math. Soc., Volume 350 (1998) no. 2, pp. 809-849 | Article | MR 1458317 | Zbl 0910.20024

[14] Carrasco Piaggio, Matias On the conformal gauge of a compact metric space, Ann. Sci. Éc. Norm. Supér. (4), Volume 46 (2013) no. 3, p. 495-548 (2013) | MR 3099984 | Zbl 1283.30072

[15] Clais, Antoine Combinatorial Modulus on Boundary of Right-Angled Hyperbolic Buildings, Anal. Geom. Metr. Spaces, Volume 4 (2016), pp. Art. 1 | Article | MR 3458960

[16] Clais, Antoine Conformal dimension on boundary of right-angled hyperbolic buildings (2016) (https://arxiv.org/abs/1602.08611) | MR 3458960

[17] Coornaert, Michel; Delzant, Thomas; Papadopoulos, Athanase Géométrie et théorie des groupes, Lecture Notes in Mathematics, Volume 1441, Springer-Verlag, Berlin, 1990, pp. x+165 (Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups], With an English summary) | MR 1075994 | Zbl 0727.20018

[18] Ghys, Étienne; de la Harpe, Pierre Espaces métriques hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) (Progr. Math.) Volume 83, Birkhäuser Boston, Boston, MA, 1990, pp. 27-45 | Article | Zbl 0731.20025

[19] Gromov, Mikhael Hyperbolic groups, Essays in group theory (Math. Sci. Res. Inst. Publ.) Volume 8, Springer, New York, 1987, pp. 75-263 | Article | MR 919829 | Zbl 0634.20015

[20] Haïssinsky, Peter Empilements de cercles et modules combinatoires, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 6, pp. 2175-2222 http://aif.cedram.org/item?id=AIF_2009__59_6_2175_0 | Numdam | MR 2640918 | Zbl 1189.30080

[21] Haïssinsky, Peter Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités [d’après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner...], Astérisque (2009) no. 326, p. Exp. No. 993, ix, 321-362 (2010) (Séminaire Bourbaki. Vol. 2007/2008) | MR 2605327 | Zbl 1275.20046

[22] Heinonen, Juha Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001, pp. x+140 | Article | MR 1800917 | Zbl 0985.46008

[23] Heinonen, Juha; Koskela, Pekka Quasiconformal maps in metric spaces with controlled geometry, Acta Math., Volume 181 (1998) no. 1, pp. 1-61 | Article | MR 1654771 | Zbl 0915.30018

[24] Keith, Stephen; Laakso, Tomi J. Conformal Assouad dimension and modulus, Geom. Funct. Anal., Volume 14 (2004) no. 6, pp. 1278-1321 | Article | MR 2135168 | Zbl 1108.28008

[25] Kleiner, Bruce The asymptotic geometry of negatively curved spaces : uniformization, geometrization and rigidity, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 743-768 | MR 2275621 | Zbl 1108.30014

[26] Lafont, Jean-François Rigidity of hyperbolic P-manifolds : a survey, Geom. Dedicata, Volume 124 (2007), pp. 143-152 | Article | MR 2318542 | Zbl 1121.53029

[27] Loewner, Charles On the conformal capacity in space, J. Math. Mech., Volume 8 (1959), pp. 411-414 | MR 104785 | Zbl 0086.28203

[28] Mackay, John M. Spaces and groups with conformal dimension greater than one, Duke Math. J., Volume 153 (2010) no. 2, pp. 211-227 | Article | MR 2667133 | Zbl 1273.30056

[29] Mackay, John M. Conformal dimension via subcomplexes for small cancellation and random groups (2014) (to appear in Math. Annalen., https://arxiv.org/abs/1409.0802) | MR 3466856

[30] Mackay, John M.; Tyson, Jeremy T. Conformal dimension, University Lecture Series, Volume 54, American Mathematical Society, Providence, RI, 2010, pp. xiv+143 (Theory and application) | MR 2662522 | Zbl 1201.30002

[31] Mackay, John M.; Tyson, Jeremy T.; Wildrick, Kevin Modulus and Poincaré inequalities on non-self-similar Sierpiński carpets, Geom. Funct. Anal., Volume 23 (2013) no. 3, pp. 985-1034 | Article | MR 3061778 | Zbl 1271.30032

[32] Markovic, Vladimir Criterion for Cannon’s conjecture, Geom. Funct. Anal., Volume 23 (2013) no. 3, pp. 1035-1061 | Article | MR 3061779 | Zbl 1276.20051

[33] Mostow, George D. Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. (1968) no. 34, pp. 53-104 | Numdam | MR 236383 | Zbl 0189.09402

[34] Pansu, Pierre Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 14 (1989) no. 2, pp. 177-212 | MR 1024425 | Zbl 0722.53028

[35] Pansu, Pierre Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2), Volume 129 (1989) no. 1, pp. 1-60 | Article | MR 979599 | Zbl 0678.53042

[36] Paulin, Frédéric Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. (2), Volume 54 (1996) no. 1, pp. 50-74 | Article | MR 1395067 | Zbl 0854.20050

[37] Sullivan, Dennis On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics : Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) (Ann. of Math. Stud.) Volume 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465-496 | MR 624833 | Zbl 0567.58015

[38] Thurston, William P. The Geometry and Topology of Three-Manifolds (1980) (Notes of Princeton University, http://library.msri.org/books/gt3m/)

[39] Tyson, Jeremy T. Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math., Volume 23 (1998) no. 2, pp. 525-548 | MR 1642158 | Zbl 0910.30022

[40] Väisälä, Jussi Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971, pp. xiv+144 | MR 454009

[41] Väisälä, Jussi Quasi-Möbius maps, J. Analyse Math., Volume 44 (1984/85), pp. 218-234 | Article | MR 801295

[42] Xie, Xiangdong Quasi-isometric rigidity of Fuchsian buildings, Topology, Volume 45 (2006) no. 1, pp. 101-169 | Article | MR 2170496 | Zbl 1083.51008