@article{SPS_2002__36__270_0,
author = {Leuridan, Christophe},
title = {Th\'eor\`eme de {Ray-Knight} dans un arbre : une approche alg\'ebrique},
journal = {S\'eminaire de probabilit\'es},
pages = {270--301},
year = {2002},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {36},
mrnumber = {1971591},
zbl = {1041.60062},
language = {fr},
url = {https://www.numdam.org/item/SPS_2002__36__270_0/}
}
TY - JOUR AU - Leuridan, Christophe TI - Théorème de Ray-Knight dans un arbre : une approche algébrique JO - Séminaire de probabilités PY - 2002 SP - 270 EP - 301 VL - 36 PB - Springer - Lecture Notes in Mathematics UR - https://www.numdam.org/item/SPS_2002__36__270_0/ LA - fr ID - SPS_2002__36__270_0 ER -
Leuridan, Christophe. Théorème de Ray-Knight dans un arbre : une approche algébrique. Séminaire de probabilités, Tome 36 (2002), pp. 270-301. https://www.numdam.org/item/SPS_2002__36__270_0/
[1] Lévy processes. Cambridge tracts in mathematics 121 (1996). | Zbl | MR
[2] , Sur la loi des temps locaux browniens pris en temps exponentiel. Séminaire de Probabilité XXII Lecture Notes in Mathematics 1321 (1988), 454-466. | Zbl | MR | Numdam
[3] , Markov Processes and Potential Theory, Academic Press, New York (1968). | Zbl | MR
[4] Local times and quantum fields. Seminar on Stochastic Processes, Birkhauser 26-4 (1983), 69-89. | Zbl | MR
[5] Dynkin's isomorphism theorem and Ray-Knight theorems. Probability Theory and Related Fields 99 (1994), 321-335. | Zbl | MR
[6] Une version sans conditionnement du théorème d'isomorphisme de Dynkin. Séminaire de Probabilité XXIX Lecture Notes in Mathematics 1613 (1995), 266-289. | Zbl | MR | Numdam
[7] , A necessary and sufficient condition for the Markov property of the local time process. Annals of Probability 21-3 (1993), 1591-1598. | Zbl | MR
[8] , A counterexample for the Markov property of local time for diffusions on graphs. Séminaire de Probabilité XXIX Lecture Notes in Mathematics 1613 (1995), 260-265. | Zbl | MR | Numdam
[9] , On the Markov property of local time for Markov processes on graphs. Stochastic Processes and their Applications 64 (1996), 153-172. | Zbl | MR
[10] ., Kac's moment formula and the Feynman-Kac formula for additive functionals of a Markov process. Stochastic Processes and their Applications 79 (1999), 117-134. | Zbl | MR
[11] Ray-Knight's theorem on Brownian local times and Tanaka's formula. Seminar on Stochastic Processes, Birkhauser (1983) 131-142. | Zbl | MR
[12] Random walks and a sojourn density process of Brownian motion. Transactions of American Mathematical Society 109 (1963) 56-86. | Zbl | MR
[13] Le théorème de Ray-Knight à temps fixe. Séminaire de Probabilité XXXII Lecture Notes in Mathematics 1686 (1998), 376-396. | Zbl | MR | Numdam
[14] , Sample path properties of local times of strongly symmetric Markov processes via Gaussian processes. Annals of probability 20-4 (1992), 1603-1684. | Zbl | MR
[15] , Moment generating functions for local times of strongly symmetric Markov processes and random walks. Proceedings of the conference "Probability in Banach Spaces" Birkhauser 8 (1992). | Zbl | MR
[16] Sur les lois de certaines fonctionnelles additives : application aux temps locaux Publications de l'Institut de Statistiques des Universités de Paris, 15 (1966), 295-310. | Zbl | MR
[17] , A decomposition of Bessel bridges. Zeitschrift für Wahrscheinlichkeitstheorie und Verwante Gebiete 59 (1982) 425-457. | Zbl | MR
[18] Sojourn times of diffusion processes. Illinois Journal of Mathematics 7 (1963) 615-630. | Zbl | MR
[19] , Diffusions, Markov processes, and Martingales Volume 1 : Foundations, second edition, John Wiley and Sons (1994). | Zbl | MR
[20] On the Ray-Knight property of local times. Journal of London Mathematical Society 31 (1985), 377-384. | Zbl | MR
[21] Excursions and local time. Temps Locaux, Astérisque 52-53 (1978),159-192.






