About projections of logarithmic Sobolev inequalities
Séminaire de probabilités de Strasbourg, Volume 36 (2002), pp. 201-221.
@article{SPS_2002__36__201_0,
     author = {Miclo, Laurent},
     title = {About projections of logarithmic {Sobolev} inequalities},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {201--221},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {36},
     year = {2002},
     mrnumber = {1971587},
     zbl = {1053.60013},
     language = {en},
     url = {http://www.numdam.org/item/SPS_2002__36__201_0/}
}
TY  - JOUR
AU  - Miclo, Laurent
TI  - About projections of logarithmic Sobolev inequalities
JO  - Séminaire de probabilités de Strasbourg
PY  - 2002
SP  - 201
EP  - 221
VL  - 36
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_2002__36__201_0/
LA  - en
ID  - SPS_2002__36__201_0
ER  - 
%0 Journal Article
%A Miclo, Laurent
%T About projections of logarithmic Sobolev inequalities
%J Séminaire de probabilités de Strasbourg
%D 2002
%P 201-221
%V 36
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_2002__36__201_0/
%G en
%F SPS_2002__36__201_0
Miclo, Laurent. About projections of logarithmic Sobolev inequalities. Séminaire de probabilités de Strasbourg, Volume 36 (2002), pp. 201-221. http://www.numdam.org/item/SPS_2002__36__201_0/

[1] D. Bakry. Remarques sur les semigroupes de Jacobi. Astérisque, (236):23-39, 1996. Hommage à P. A. Meyer et J. Neveu. | Numdam | MR | Zbl

[2] S.G. Bobkov and F. Götze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal., 163(1):1-28, 1999. | MR | Zbl

[3] P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains. The Annals of Applied Probability, 6(3):695-750, 1996. | MR | Zbl

[4] K.T. Fang, S. Kotz, and K.W. Ng. Symmetric multivariate and related distributions. Chapman and Hall Ltd., London, 1990. | MR | Zbl

[5] L. Gross. Logarithmic Sobolev inequalities. American Journal of Mathematics, 97(4):1061-1083, 1976. | MR | Zbl

[6] R. Holley and D. Stroock. Simulated annealing via Sobolev inequalities. Communications in Mathematical Physics, 115:553-569, 1988. | MR | Zbl

[7] A. Korzeniowski and D.W. Stroock. An example in the theory of hypercontractive semigroups. Proc. Amer. Math. Soc., 94(1):87-90, 1985. | MR | Zbl

[8] M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Probabilités, XXXIII, pages 120-216. Springer, Berlin, 1999. | Numdam | MR | Zbl

[9] L. Miclo. An example of application of discrete Hardy's inequalities. Markov Processes and Related Fields, 5(3):319-330, 1999. | MR | Zbl

[10] L. Miclo. Sur l'inégalité de Sobolev logarithmique des opérateurs de Laguerre à petit paramètre. Preprint, 2001.

[11] B. Muckenhoupt. Hardy's inequality with weights. Studia Mathematica, XLIV:31-38, 1972. | Zbl

[12] N. Shimakura. Équations différentielles provenant de la génétique de population. In Séminaire Goulaouic-Schwartz (1975/1976), Équations aux dérivées partielles et analyse fonctionnelle, Exp. No. 15, page 10. Centre Math., École Polytech., Palaiseau, 1976. | Numdam | MR | Zbl

[13] W. Stannat. On the validity of the log-Sobolev inequality for symmetric Fleming-Viot operators. Ann. Probab., 28(2):667-684, 2000. | MR | Zbl

[14] G. Szegö. Orthogonal polynomials. American Mathematical Society, Providence, R.I., third edition, 1967. American Mathematical Society Colloquium Publications, Vol. 23. | MR