@article{SPS_2000__34__239_0,
author = {Harris, Simon C.},
title = {Convergence of a {{\textquotedblleft}Gibbs-Boltzmann{\textquotedblright}} random measure for a typed branching diffusion},
journal = {S\'eminaire de probabilit\'es},
pages = {239--256},
year = {2000},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {34},
mrnumber = {1768067},
zbl = {0985.60053},
language = {en},
url = {https://www.numdam.org/item/SPS_2000__34__239_0/}
}
TY - JOUR AU - Harris, Simon C. TI - Convergence of a “Gibbs-Boltzmann” random measure for a typed branching diffusion JO - Séminaire de probabilités PY - 2000 SP - 239 EP - 256 VL - 34 PB - Springer - Lecture Notes in Mathematics UR - https://www.numdam.org/item/SPS_2000__34__239_0/ LA - en ID - SPS_2000__34__239_0 ER -
%0 Journal Article %A Harris, Simon C. %T Convergence of a “Gibbs-Boltzmann” random measure for a typed branching diffusion %J Séminaire de probabilités %D 2000 %P 239-256 %V 34 %I Springer - Lecture Notes in Mathematics %U https://www.numdam.org/item/SPS_2000__34__239_0/ %G en %F SPS_2000__34__239_0
Harris, Simon C. Convergence of a “Gibbs-Boltzmann” random measure for a typed branching diffusion. Séminaire de probabilités, Tome 34 (2000), pp. 239-256. https://www.numdam.org/item/SPS_2000__34__239_0/
[1] (1992) Uniform convergence in the branching random walk, Ann. Probab., 20, 137-151 | Zbl | MR
[2] (1968) Probability. Addison-Wesley, London. | Zbl | MR
[3] , , , & (1995) Analysis, algebra and probability for a coupled system of reaction-diffusion equations, Phil. Trans. Roy. Soc. London (A), 350, 69-112. | Zbl
[4] & (1997) Boltzmann-Gibbs weights in the branching random walk. Classical and Modern Branching Processes (ed. Athreya, Krishna, et al.), IMA Vol. Math. Appl., 84, pp 41-50. Springer, New York. | Zbl
[5] & (2000) Large-deviations and martingales for a typed branching diffusion: II, (In preparation).
[6] & (1996) Large-deviations and martingales for a typed branching diffusion : I, Astérisque, 236, 133-154. | Zbl | Numdam
[7] (2000) A typed branching diffusion, a reaction-diffusion equation and travelling-waves. (In preparation).
[8] (1975) Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math. 28, 323-331. | Zbl | MR
[9] (1976) Correction to the above. Comm. Pure Appl. Math. 29, 553-554. | Zbl | MR
[10] (1987) Multiplicative martingales for spatial branching processes. Seminar on Stochastic Processes (ed. E.Çinlar, K.Chung and R.Getoor), Progress in Probability & Statistics. 15. pp. 223-241. Birkhäuser, Boston. | Zbl
[11] & (1991) Continuous martingales and Brownian motion. Springer, Berlin. | Zbl
[12] & (1994) Diffusions, Markov processes and martingales. Volume 1: Foundations. (Second Edition). Wiley,Chichester and New York. | Zbl
[13] & (1987) Diffusions, Markov processes and martingales. Volume 2: Itô Calculus. Wiley, Chichester and New York. | Zbl
[14] (1967) Orthogonal Polynomials (Third Edition). American Mathematical Society Colloquium Publications, Volume XXIII. | MR





