@article{SPS_1999__33__388_0,
author = {Pitman, Jim},
title = {The distribution of local times of a brownian bridge},
journal = {S\'eminaire de probabilit\'es},
pages = {388--394},
year = {1999},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {33},
mrnumber = {1768012},
zbl = {0945.60081},
language = {en},
url = {https://www.numdam.org/item/SPS_1999__33__388_0/}
}
Pitman, Jim. The distribution of local times of a brownian bridge. Séminaire de probabilités, Tome 33 (1999), pp. 388-394. https://www.numdam.org/item/SPS_1999__33__388_0/
[1] and . Brownian bridge asymptotics for random mappings. Random Structures and Algorithms, 5:487-512, 1994. | Zbl | MR
[2] and . The standard additive coalescent. Technical Report 489, Dept. Statistics, U.C. Berkeley, 1997. To appear in Ann. Probab.. Available via http://www.stat.berkeley.edu/users/pitman. | Zbl | MR
[3] and . Tree-valued Markov chains derived from Galton-Vatson processes. Ann. Inst. Henri Poincaré, 34:637-686, 1998. | Numdam | Zbl | MR | EuDML
[4] and . Laws of the iterated logarithm for local times of the empirical process. Ann. Probab., 23:388 - 399, 1995. | Zbl | MR
[5] and . Path transformations connecting Brownian bridge, excursion and meander. Bull. Sci. Math. (2), 118:147-166, 1994. | Zbl | MR
[6] and . Sur la loi des temps locaux Browniens pris en un temps exponentiel. In Séminaire de Probabilités XXII, pages 454-466. Springer, 1988. Lecture Notes in Math. 1321. | Numdam | Zbl | MR | EuDML
[7] . Brownian local time. Russian Math. Surveys, 44:2:1-51, 1989. | Zbl | MR
[8] . Excursions in Brownian motion. Arkiv fur Matematik, 14:155-177, 1976. | Zbl | MR
[9] and . Stopped Markov chains with stationary occupation times. Probab. Th. Rel. Fields, 109:425-433, 1997. | Zbl | MR
[10] , , and . Markovian bridges: construction, Palm interpretation, and splicing. In E. Çinlar, K.L. Chung, and M.J. Sharpe, editors, Seminar on Stochastic Processes, 1992, pages 101-134. Birkhäuser, Boston, 1993. | Zbl | MR
[11] and . Invariance of the occupation time of the Brownian bridge process. Preprint, Indiana Univerity. Available via http://www.math.indiana.edu/home/zumbrun, 1998. | MR
[12] . On Brownian bridge and excursion. Studia Sci. Math. Hungar., 20:1-10, 1985. | Zbl | MR
[13] . Special Functions and their Applications. Prentice-Hall, Englewood Cliffs, N.J., 1965. | Zbl | MR
[14] . Le théorème de Ray-Knight à temps fixe. In J. Azéma, M. Émery, M. Ledoux, and M. Yor, editors, Séminaire de Probabilités XXXII, pages 376-406. Springer, 1998. Lecture Notes in Math. 1686. | Zbl | MR | Numdam
[15] . Sur certains processus stochastiques homogènes. Compositio Math., 7:283-339, 1939. | Zbl | MR | JFM | Numdam
[16] . Cyclically stationary Brownian local time processes. Probab. Th. Rel. Fields, 106:299-329, 1996. | Zbl | MR
[17] . The SDE solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree or forest. Technical Report 503, Dept. Statistics, U.C. Berkeley, 1997. To appear in Ann. Prob.. Available via http://www.stat.berkeley.edu/users/pitman. | Zbl | MR
[18] and . Some properties of the arc sine law related to its invariance under a family of rational maps. In preparation, 1998.
[19] . Sojourn times of a diffusion process. Ill. J. Math., 7:615-630. 1963. | Zbl | MR
[20] and . Continuous martingales and Brownian motion. Springer, Berlin-Heidelberg, 1994. 2nd edition. | Zbl | MR
[21] and . Empirical processes with applications to statistics. John Wiley & Sons, New York, 1986.
[22] . Certain generalizations in the analysis of variance. Biometrika, 24:471-494, 1932. | Zbl | JFM
[23] . Path decomposition and continuity of local time for one dimensional diffusions I. Proc. London Math. Soc. (3), 28:738-768, 1974. | Zbl | MR





