@article{SPS_1984__18__1_0,
author = {Barlow, Martin T. and Perkins, Edwin A.},
title = {Levels at which every brownian excursion is exceptional},
journal = {S\'eminaire de probabilit\'es},
pages = {1--28},
year = {1984},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {18},
mrnumber = {770945},
zbl = {0555.60050},
language = {en},
url = {https://www.numdam.org/item/SPS_1984__18__1_0/}
}
TY - JOUR AU - Barlow, Martin T. AU - Perkins, Edwin A. TI - Levels at which every brownian excursion is exceptional JO - Séminaire de probabilités PY - 1984 SP - 1 EP - 28 VL - 18 PB - Springer - Lecture Notes in Mathematics UR - https://www.numdam.org/item/SPS_1984__18__1_0/ LA - en ID - SPS_1984__18__1_0 ER -
Barlow, Martin T.; Perkins, Edwin A. Levels at which every brownian excursion is exceptional. Séminaire de probabilités, Tome 18 (1984), pp. 1-28. https://www.numdam.org/item/SPS_1984__18__1_0/
1. , , , . Generalized arc length for Brownian motion and Lévy processes. Z.f.W. 57, 197-211 (1981). | Zbl | MR
2. . On Brownian slow points. Z.f.W. 64, 359-367 (1983). | Zbl | MR
3. , . Brownian slow points: the critical cases (preprint). | MR
4. . Topology. Boston, Allyn and Bacon, Inc., 1966. | Zbl | MR
5. . A lower Lipschitz condition for the stable subordinator. Z.f.W. 17, 23-32 (1971). | Zbl | MR
6. . On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set. Z.f.W. 19, 90-102 (1971). | Zbl | MR
7. . Hausdorff measure, entropy, and the independence of small sets. Proc. London Math. Soc. (3) 28, 700-724 (1974). | Zbl | MR
8. , . Uniform Dimension Results for Processes with Independent Increments. Z.f.W. 28, 277-288 (1974). | Zbl | MR
9. , . Diffusion Processes and Their Sample Paths. Berlin-Heidelberg-New York, Springer, 1974. | Zbl | MR
10. . Slow points of Gaussian processes. Conference on Harmonic Analysis in Honor of Antoni Zygmund, I, 67-83, Wadsworth, 1981. | MR
11. . Essentials of Brownian Motion and Diffusion. Amer. Math. Soc. Surveys 18, 1981. | Zbl | MR
12. . Processus Stochastiques et Mouvement Brownien. Paris, Gauthier-Villars, 1948. | Zbl | MR
13. . A global intrinsic characterization of Brownian local time. Ann. Probability 9, 800-817 (1981). | Zbl | MR
14. . The exact Hausdorff measure of the level sets of Brownian motion. Z.f.W. 58, 373-388 (1981). | Zbl | MR
15. . On the Hausdorff dimension of the Brownian slow points. Z.f.W. 64, 369-399 (1983). | Zbl | MR
16. , . How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. (3) 28, 174-192 (1974). | Zbl | MR
17. , . A conditioned limit theorem for random walk and Brownian local time on square root boundaries, Ann. Probability 11, 227-261 (1983). | Zbl | MR
18. . The Brownian escape process. Ann. Probability 7, 864-867 (1974). | Zbl | MR
19. . Path decompositions and continuity of local time for one-dimensional diffusions I. Proc. London Math. Soc. 28, 738-768 (1974). | Zbl | MR
20. , . On the filtration of B + L . Z.f.W. 59, 383-390 (1982). | Zbl | MR






