On minimal positive harmonic functions
Séminaire Brelot-Choquet-Deny. Théorie du potentiel, Volume 11  (1966-1967), Talk no. 18, 14 p.
@article{SBCD_1966-1967__11__A10_0,
     author = {Gowrisankaran, Kohur},
     title = {On minimal positive harmonic functions},
     journal = {S\'eminaire Brelot-Choquet-Deny. Th\'eorie du potentiel},
     publisher = {Secr\'etariat math\'ematique},
     volume = {11},
     year = {1966-1967},
     note = {talk:18},
     zbl = {0159.16303},
     mrnumber = {236407},
     language = {en},
     url = {http://www.numdam.org/item/SBCD_1966-1967__11__A10_0}
}
Gowrisankaran, Kohur. On minimal positive harmonic functions. Séminaire Brelot-Choquet-Deny. Théorie du potentiel, Volume 11 (1966-1967) , Talk no. 18, 14 p. http://www.numdam.org/item/SBCD_1966-1967__11__A10_0/

[1] Brelot (M.). - Lectures on potential theory. - Bombay, Tata Institute of fundamental Research, 1960 (Tata Institute of fundamental Research. Lectures on Mathematics, 19). | MR 118980 | Zbl 0098.06903

[2] Gowrisankaran (Kohur). - Extreme harmonic functions and boundary value problems Ann. Inst. Fourier, Grenoble, t. 13, 1963, Fasc. 2, p. 307-356. | Numdam | MR 164051 | Zbl 0134.09503

[3] Gowrisankaran (Kohur). - Extreme harmonic functions and boundary value problems II, Math. Z., t. 94, 1966, p. 256-270. | MR 201660 | Zbl 0147.10102

[4] Gowrisankaran (Kohur). - Fatou-Naim-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier, Grenoble, t. 16, 1966, Fasc. 2, p. 455-467. | Numdam | MR 210917 | Zbl 0145.15103

[5] Hervé (Rose-Marie). - Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, Grenoble, t. 12, 1962, p. 415-571. (Thèse Sc. math. Paris, 1961). | Numdam | MR 139756 | Zbl 0101.08103

[6] Naïm (Linda). - Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier, Grenoble, t. 7, 1957, p. 183-281 (Thèse Sc. math. Paris, 1957). | Numdam | MR 100174 | Zbl 0086.30603

[7] Schwartz (Laurent). - Radon measures on general topological spaces (to appear).