@article{PMIHES_2008__107__1_0, author = {Chen, X. X. and Tian, G.}, title = {Geometry of {K\"ahler} metrics and foliations by holomorphic discs}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--107}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {107}, year = {2008}, doi = {10.1007/s10240-008-0013-4}, mrnumber = {2434691}, zbl = {1182.32009}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-008-0013-4/} }
TY - JOUR AU - Chen, X. X. AU - Tian, G. TI - Geometry of Kähler metrics and foliations by holomorphic discs JO - Publications Mathématiques de l'IHÉS PY - 2008 SP - 1 EP - 107 VL - 107 PB - Institut des Hautes Études Scientifiques UR - http://www.numdam.org/articles/10.1007/s10240-008-0013-4/ DO - 10.1007/s10240-008-0013-4 LA - en ID - PMIHES_2008__107__1_0 ER -
%0 Journal Article %A Chen, X. X. %A Tian, G. %T Geometry of Kähler metrics and foliations by holomorphic discs %J Publications Mathématiques de l'IHÉS %D 2008 %P 1-107 %V 107 %I Institut des Hautes Études Scientifiques %U http://www.numdam.org/articles/10.1007/s10240-008-0013-4/ %R 10.1007/s10240-008-0013-4 %G en %F PMIHES_2008__107__1_0
Chen, X. X.; Tian, G. Geometry of Kähler metrics and foliations by holomorphic discs. Publications Mathématiques de l'IHÉS, Volume 107 (2008), pp. 1-107. doi : 10.1007/s10240-008-0013-4. http://www.numdam.org/articles/10.1007/s10240-008-0013-4/
[1] Uniqueness of Einstein Kähler metrics modulo connected group actions. Algebr. Geom., Sendai, 1985, Adv. Stud. Pure Math. 10: pp. 11-40 | MR | Zbl
, (1987)[2] The Dirichlet problem for the complex Monge-Ampere operator. Invent. Math. 37: pp. 1-44 | MR | Zbl
, (1976)[3] An extension of e. Hopf's maximum principle with an application to Riemannian geometry. Duke Math. J. 25: pp. 45-56 | MR | Zbl
(1957)[4] Extremal Kähler metrics. Seminar on Differential Geometry. Princeton University Press, Princeton, pp. 259-290 | MR | Zbl
(1982)[5] Extremal Kähler metrics. II. Differential Geometry and Complex Analysis. Springer, Berlin, pp. 95-114 | MR | Zbl
(1985)[6] The space of Kähler metrics. II. J. Differ. Geom. 61: pp. 173-193 | MR | Zbl
, (2002)[7] Extremal Hermitian metrics in Riemann surface. Int. Math. Res. Not. 15: pp. 781-797 | MR | Zbl
(1998)[8] On the lower bound of the Mabuchi energy and its application. Int. Math. Res. Not. 2000: pp. 607-623 | MR | Zbl
(2000)[9] Space of Kähler metrics. J. Differ. Geom. 56: pp. 189-234 | MR | Zbl
(2000)[10] Holomorphic spheres in loop groups and Bott periodicity. Surveys in Differential Geometry. Int. Press, Somerville, MA, pp. 83-106 | MR | Zbl
, , (2000)[11] Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar. Amer. Math. Soc. Transl. 196: pp. 13-33 | MR | Zbl
(1999)[12] Holomorphic discs and the complex Monge-Ampère equation. J. Sympletic Geom. 1: pp. 171-196 | MR | Zbl
(2001)[13] Scalar curvature and projective embeddings, II. Q. J. Math. 56: pp. 345-356 | MR | Zbl
(2005)[14] Analytic discs with boundaries in a maximal real submanifolds of . Ann. Inst. Fourier 37: pp. 1-44 | Numdam | MR | Zbl
(1987)[15] Remarks on extremal Kähler metrics on ruled manifolds. Nagoya Math. J. 126: pp. 89-101 | MR | Zbl
(1992)[16] Perturbation by analytic discs along maximal real submanifolds of . Math. Z. 217: pp. 287-316 | MR | Zbl
(1994)[17] The Dirichlet problem for nonlinear second-order elliptic equation I, Monge-Ampere equation. Comm. Pure Appl. Math. 37: pp. 369-402 | MR | Zbl
, , (1984)[18] The Dirichlet problem for nonlinear second-order elliptic equation II. Complex Monge-Ampere equation. Comm. Pure Appl. Math. 38: pp. 209-252 | MR | Zbl
, , , (1985)[19] Solving the degenerate Monge-Ampere equation with one concentrated singularity. Math. Ann. 263: pp. 515-532 | MR | Zbl
(1983)[20] Some symplectic geometry on compact Kähler manifolds I. Osaka J. Math. 24: pp. 227-252 | MR | Zbl
(1987)[21] Riemann-Hilbert problem and application to the perturbation theory of analytic discs. Kyungpook Math. J. 35: pp. 38-75 | MR | Zbl
(1995)[22] Fredhom theory of holomorphic discs under the perturbation theory of boundary conditions. Math. Z. 222: pp. 505-520 | MR | Zbl
(1996)[23] On the inequality . Pac. J. Math. 7: pp. 1641-1647 | MR | Zbl
(1957)[24] Algebraic and analytic K-stability, preprint, math/0404223.
and ,[25] Complex Monge-Ampère equations and sympletic manifolds. Amer. J. Math. 114: pp. 495-550 | MR | Zbl
(1992)[26] On Calabi's conjecture for complex surfaces with positive first Chern class. Invent. Math. 101: pp. 101-172 | MR | Zbl
(1990)[27] Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130: pp. 1-39 | MR | Zbl
(1997)[28] Canonical Metrics in Kähler Geometry (Notes taken by Meike Akveld). Birkhäuser, Basel | MR | Zbl
(2000)[29] Bott-Chern forms and geometric stability. Discrete Contin. Dyn. Syst. 6: pp. 211-220 | MR | Zbl
(2000)[30] A new holomorphic invariant and uniqueness of Kähler-Ricci solitons. Comment. Math. Helv. 77: pp. 297-325 | MR | Zbl
, (2002)[31] Systems of Singular Integral Equations. Groningen, Nordhoff
(1967)[32] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation, I*. Comm. Pure Appl. Math. 31: pp. 339-441 | MR | Zbl
(1978)Cited by Sources: