@article{PMIHES_2008__107__1_0,
author = {Chen, X. X. and Tian, G.},
title = {Geometry of {K\"ahler} metrics and foliations by holomorphic discs},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {1--107},
year = {2008},
publisher = {Institut des Hautes Etudes Scientifiques},
volume = {107},
doi = {10.1007/s10240-008-0013-4},
mrnumber = {2434691},
zbl = {1182.32009},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-008-0013-4/}
}
TY - JOUR AU - Chen, X. X. AU - Tian, G. TI - Geometry of Kähler metrics and foliations by holomorphic discs JO - Publications Mathématiques de l'IHÉS PY - 2008 SP - 1 EP - 107 VL - 107 PB - Institut des Hautes Etudes Scientifiques UR - https://www.numdam.org/articles/10.1007/s10240-008-0013-4/ DO - 10.1007/s10240-008-0013-4 LA - en ID - PMIHES_2008__107__1_0 ER -
%0 Journal Article %A Chen, X. X. %A Tian, G. %T Geometry of Kähler metrics and foliations by holomorphic discs %J Publications Mathématiques de l'IHÉS %D 2008 %P 1-107 %V 107 %I Institut des Hautes Etudes Scientifiques %U https://www.numdam.org/articles/10.1007/s10240-008-0013-4/ %R 10.1007/s10240-008-0013-4 %G en %F PMIHES_2008__107__1_0
Chen, X. X.; Tian, G. Geometry of Kähler metrics and foliations by holomorphic discs. Publications Mathématiques de l'IHÉS, Tome 107 (2008), pp. 1-107. doi: 10.1007/s10240-008-0013-4
[1] , (1987) Uniqueness of Einstein Kähler metrics modulo connected group actions. Algebr. Geom., Sendai, 1985, Adv. Stud. Pure Math. 10: pp. 11-40 | Zbl | MR
[2] , (1976) The Dirichlet problem for the complex Monge-Ampere operator. Invent. Math. 37: pp. 1-44 | Zbl | MR
[3] (1957) An extension of e. Hopf's maximum principle with an application to Riemannian geometry. Duke Math. J. 25: pp. 45-56 | Zbl | MR
[4] (1982) Extremal Kähler metrics. Seminar on Differential Geometry. Princeton University Press, Princeton, pp. 259-290 | Zbl | MR
[5] (1985) Extremal Kähler metrics. II. Differential Geometry and Complex Analysis. Springer, Berlin, pp. 95-114 | Zbl | MR
[6] , (2002) The space of Kähler metrics. II. J. Differ. Geom. 61: pp. 173-193 | Zbl | MR
[7] (1998) Extremal Hermitian metrics in Riemann surface. Int. Math. Res. Not. 15: pp. 781-797 | Zbl | MR
[8] (2000) On the lower bound of the Mabuchi energy and its application. Int. Math. Res. Not. 2000: pp. 607-623 | Zbl | MR
[9] (2000) Space of Kähler metrics. J. Differ. Geom. 56: pp. 189-234 | Zbl | MR
[10] , , (2000) Holomorphic spheres in loop groups and Bott periodicity. Surveys in Differential Geometry. Int. Press, Somerville, MA, pp. 83-106 | Zbl | MR
[11] (1999) Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar. Amer. Math. Soc. Transl. 196: pp. 13-33 | Zbl | MR
[12] (2001) Holomorphic discs and the complex Monge-Ampère equation. J. Sympletic Geom. 1: pp. 171-196 | Zbl | MR
[13] (2005) Scalar curvature and projective embeddings, II. Q. J. Math. 56: pp. 345-356 | Zbl | MR
[14] (1987) Analytic discs with boundaries in a maximal real submanifolds of . Ann. Inst. Fourier 37: pp. 1-44 | Zbl | MR | Numdam
[15] (1992) Remarks on extremal Kähler metrics on ruled manifolds. Nagoya Math. J. 126: pp. 89-101 | Zbl | MR
[16] (1994) Perturbation by analytic discs along maximal real submanifolds of . Math. Z. 217: pp. 287-316 | Zbl | MR
[17] , , (1984) The Dirichlet problem for nonlinear second-order elliptic equation I, Monge-Ampere equation. Comm. Pure Appl. Math. 37: pp. 369-402 | Zbl | MR
[18] , , , (1985) The Dirichlet problem for nonlinear second-order elliptic equation II. Complex Monge-Ampere equation. Comm. Pure Appl. Math. 38: pp. 209-252 | Zbl | MR
[19] (1983) Solving the degenerate Monge-Ampere equation with one concentrated singularity. Math. Ann. 263: pp. 515-532 | Zbl | MR
[20] (1987) Some symplectic geometry on compact Kähler manifolds I. Osaka J. Math. 24: pp. 227-252 | Zbl | MR
[21] (1995) Riemann-Hilbert problem and application to the perturbation theory of analytic discs. Kyungpook Math. J. 35: pp. 38-75 | Zbl | MR
[22] (1996) Fredhom theory of holomorphic discs under the perturbation theory of boundary conditions. Math. Z. 222: pp. 505-520 | Zbl | MR
[23] (1957) On the inequality . Pac. J. Math. 7: pp. 1641-1647 | Zbl | MR
[24] and , Algebraic and analytic K-stability, preprint, math/0404223.
[25] (1992) Complex Monge-Ampère equations and sympletic manifolds. Amer. J. Math. 114: pp. 495-550 | Zbl | MR
[26] (1990) On Calabi's conjecture for complex surfaces with positive first Chern class. Invent. Math. 101: pp. 101-172 | Zbl | MR
[27] (1997) Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130: pp. 1-39 | Zbl | MR
[28] (2000) Canonical Metrics in Kähler Geometry (Notes taken by Meike Akveld). Birkhäuser, Basel | Zbl | MR
[29] (2000) Bott-Chern forms and geometric stability. Discrete Contin. Dyn. Syst. 6: pp. 211-220 | Zbl | MR
[30] , (2002) A new holomorphic invariant and uniqueness of Kähler-Ricci solitons. Comment. Math. Helv. 77: pp. 297-325 | Zbl | MR
[31] (1967) Systems of Singular Integral Equations. Groningen, Nordhoff
[32] (1978) On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation, I*. Comm. Pure Appl. Math. 31: pp. 339-441 | Zbl | MR
Cité par Sources :





