Exponential mixing for the Teichmüller flow
Publications Mathématiques de l'IHÉS, Volume 104 (2006), p. 143-211

We study the dynamics of the Teichmüller flow in the moduli space of abelian differentials (and more generally, its restriction to any connected component of a stratum). We show that the (Masur-Veech) absolutely continuous invariant probability measure is exponentially mixing for the class of Hölder observables. A geometric consequence is that the SL(2,) action in the moduli space has a spectral gap.

@article{PMIHES_2006__104__143_0,
     author = {Avila, Artur and Gou\"ezel, S\'ebastien and Yoccoz, Jean-Christophe},
     title = {Exponential mixing for the Teichm\"uller flow},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     publisher = {Springer},
     volume = {104},
     year = {2006},
     pages = {143-211},
     doi = {10.1007/s10240-006-0001-5},
     zbl = {pre05117096},
     mrnumber = {2264836},
     language = {en},
     url = {http://www.numdam.org/item/PMIHES_2006__104__143_0}
}
Avila, Artur; Gouëzel, Sébastien; Yoccoz, Jean-Christophe. Exponential mixing for the Teichmüller flow. Publications Mathématiques de l'IHÉS, Volume 104 (2006) pp. 143-211. doi : 10.1007/s10240-006-0001-5. http://www.numdam.org/item/PMIHES_2006__104__143_0/

1. A. Avila and G. Forni, Weak mixing for interval exchange transformations and translation flows, preprint (www.arXiv.org), to appear in Ann. Math. | MR 2299743 | Zbl pre05180745

2. A. Avila and M. Viana, Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, to appear in Acta Math. | MR 2316268 | Zbl pre05166603

3. J. Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol. 50. American Mathematical Society, Providence, RI, 1997. | MR 1450400 | Zbl 0882.28013

4. J. Athreya, Quantitative recurrence and large deviations for Teichmüller geodesic flow, Geom. Dedicata, 119 (2006), 121-140 | MR 2247652 | Zbl 1108.32007

5. V. Baladi, B. Vallée, Exponential decay of correlations for surface semi-flows without finite Markov partitions, Proc. Amer. Math. Soc., 133 (2005), 865-874 | MR 2113938 | Zbl 1055.37027

6. A. Bufetov, Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of abelian differentials, J. Amer. Math. Soc., 19 (2006), 579-623 | MR 2220100 | Zbl 1100.37002

7. D. Dolgopyat, On decay of correlations in Anosov flows, Ann. Math. (2), 147 (1998), 357-390 | MR 1626749 | Zbl 0911.58029

8. A. Eskin, H. Masur, Asymptotic formulas on flat surfaces, Ergod. Theory Dynam. Syst., 21 (2001), 443-478 | MR 1827113 | Zbl 1096.37501

9. G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. Math. (2), 155 (2002), 1-103 | MR 1888794 | Zbl 1034.37003

10. H. Hennion, Sur un théorème spectral et son application aux noyaux lipschitziens, Proc. Amer. Math. Soc., 118 (1993), 627-634 | MR 1129880 | Zbl 0772.60049

11. S.P. Kerckhoff, Simplicial systems for interval exchange maps and measured foliations, Ergod. Theory Dynam. Syst., 5 (1985), 257-271 | MR 796753 | Zbl 0597.58024

12. M. Kontsevich, A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678 | MR 2000471 | Zbl 1087.32010

13. G.A. Margulis, A. Nevo, E.M. Stein, Analogs of Wiener's ergodic theorems for semisimple Lie groups. II, Duke Math. J., 103 (2000), 233-259 | Zbl 0978.22006

14. S. Marmi, P. Moussa, J.-C. Yoccoz, The cohomological equation for Roth type interval exchange transformations, J. Amer. Math. Soc., 18 (2005), 823-872 | MR 2163864 | Zbl 1112.37002

15. H. Masur, Interval exchange transformations and measured foliations, Ann. Math. (2), 115 (1982), 169-200 | MR 644018 | Zbl 0497.28012

16. M. Ratner, The rate of mixing for geodesic and horocycle flows, Ergod. Theory Dynam. Syst., 7 (1987), 267-288 | MR 896798 | Zbl 0623.22008

17. G. Rauzy, Echanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328 | Zbl 0414.28018

18. W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. Math. (2), 115 (1982), 201-242 | MR 644019 | Zbl 0486.28014

19. W. Veech, The Teichmüller geodesic flow, Ann. Math. (2), 124 (1986), 441-530 | MR 866707 | Zbl 0658.32016

20. A. Zorich, Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier, 46 (1996), 325-370 | Numdam | MR 1393518 | Zbl 0853.28007