Every bounded convex open set of is endowed with its Hilbert metric . We give a necessary and sufficient condition, called quasisymmetric convexity, for this metric space to be hyperbolic. As a corollary, when the boundary is real analytic, is always hyperbolic. In dimension 2, this condition is: in affine coordinates, the boundary is locally the graph of a C strictly convex function whose derivative is quasisymmetric.
@article{PMIHES_2003__97__181_0,
author = {Benoist, Yves},
title = {Convexes hyperboliques et fonctions quasisym\'etriques},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {181--237},
year = {2003},
publisher = {Springer},
volume = {97},
doi = {10.1007/s10240-003-0012-4},
mrnumber = {2010741},
zbl = {1049.53027},
language = {fr},
url = {https://www.numdam.org/articles/10.1007/s10240-003-0012-4/}
}
TY - JOUR AU - Benoist, Yves TI - Convexes hyperboliques et fonctions quasisymétriques JO - Publications Mathématiques de l'IHÉS PY - 2003 SP - 181 EP - 237 VL - 97 PB - Springer UR - https://www.numdam.org/articles/10.1007/s10240-003-0012-4/ DO - 10.1007/s10240-003-0012-4 LA - fr ID - PMIHES_2003__97__181_0 ER -
Benoist, Yves. Convexes hyperboliques et fonctions quasisymétriques. Publications Mathématiques de l'IHÉS, Tome 97 (2003), pp. 181-237. doi: 10.1007/s10240-003-0012-4
1. , Lectures on quasiconformal mappings, Wadthworth (1966). | Zbl | MR
2. , , The boundary correspondance under quasiconformal mappings, Acta Math. 96 (1956) 125-142. | Zbl | MR
3. , Convexes divisibles I, preprint (2001) et Comp. Rend. Ac. Sc. 332 (2001), 387-390. | Zbl | MR
4. , Sur les variétés localement affines et localement projectives, Bull. Soc. Math. Fr. 88 (1960), 229-332. | Zbl | MR | Numdam
5. , , Semianalytic and subanalytics sets, Publ. IHES 67 (1988), 5-42. | Zbl | MR | Numdam
6. , , Analysis on symmetric cones, Oxford Math. Mono. (1994). | Zbl | MR
7. , , Sur les groupes hyperboliques d'après Mikhael Gromov, PM 83, Birkhäuser (1990). | Zbl
8. W. Goldman, Projective Geometry, Notes de cours a Maryland (1988).
9. , Hyperbolic groups, in “Essays in group theory”, MSRI Publ. 8 (1987), 75-263. | Zbl
10. , Extremum problem with inequalities as subsidiary conditions, Courant anniversary volume (1948), 187-204. | Zbl | MR
11. , , The Hilbert metric and Gromov hyperbolicity, l'Ens. Math. 48 (2002), 73-89. | Zbl
12. , Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math. 1 (1983), 193-260. | Zbl | MR
Cité par Sources :





