Complete intersection dimension
Publications Mathématiques de l'IHÉS, Volume 86 (1997), pp. 67-114.
@article{PMIHES_1997__86__67_0,
     author = {Avramov, Luchezar L. and Gasharov, Vesselin N. and Peeva, Irena V.},
     title = {Complete intersection dimension},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {67--114},
     publisher = {Institut des Hautes \'Etudes Scientifiques},
     volume = {86},
     year = {1997},
     zbl = {0918.13008},
     mrnumber = {99c:13033},
     language = {en},
     url = {http://www.numdam.org/item/PMIHES_1997__86__67_0/}
}
TY  - JOUR
AU  - Avramov, Luchezar L.
AU  - Gasharov, Vesselin N.
AU  - Peeva, Irena V.
TI  - Complete intersection dimension
JO  - Publications Mathématiques de l'IHÉS
PY  - 1997
DA  - 1997///
SP  - 67
EP  - 114
VL  - 86
PB  - Institut des Hautes Études Scientifiques
UR  - http://www.numdam.org/item/PMIHES_1997__86__67_0/
UR  - https://zbmath.org/?q=an%3A0918.13008
UR  - https://www.ams.org/mathscinet-getitem?mr=99c:13033
LA  - en
ID  - PMIHES_1997__86__67_0
ER  - 
%0 Journal Article
%A Avramov, Luchezar L.
%A Gasharov, Vesselin N.
%A Peeva, Irena V.
%T Complete intersection dimension
%J Publications Mathématiques de l'IHÉS
%D 1997
%P 67-114
%V 86
%I Institut des Hautes Études Scientifiques
%G en
%F PMIHES_1997__86__67_0
Avramov, Luchezar L.; Gasharov, Vesselin N.; Peeva, Irena V. Complete intersection dimension. Publications Mathématiques de l'IHÉS, Volume 86 (1997), pp. 67-114. http://www.numdam.org/item/PMIHES_1997__86__67_0/

[1] J. Alperin, L. Evens, Representations, resolutions, and Quillen's dimension theorem, J. Pure Appl. Algebra 22 (1981), 1-9. | MR | Zbl

[2] D. Anick, A counterexample to a conjecture of Serre, Ann. of Math. 115 (1982), 1-33. | MR | Zbl

[3] M. André, Hopf algebras with divided powers, J. Algebra 18 (1971), 19-50. | MR | Zbl

[4] E. F. Assmus, Jr., On the homology of local rings, Ill. J. Math. 3 (1959), 187-199. | MR | Zbl

[5] M. Auslander, M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94 (1969). | MR | Zbl

[6] L. L. Avramov, Obstructions to the existence of multiplicative structures on minimal free resolutions, Amer. J. Math. 103 (1981), 1-31. | MR | Zbl

[7] L. L. Avramov, Local algebra and rational homotopy, Homotopie algébrique et algèbre locale (J.-M. LEMAIRE, J.-C. THOMAS, eds.), Astérisque, vol. 113-114, Soc. Math. France, Paris, 1984, p. 15-43. | Zbl

[8] L. L. Avramov, Modules of finite virtual projective dimension, Invent. math. 96 (1989), 71-101. | MR | Zbl

[9] L. L. Avramov, Homological asymptotics of modules over local rings, Commutative algebra (M. HOCHSTER, C. HUNEKE, J. SALLY, eds.), MSRI Publ., vol. 15, Springer, New York, 1989, p. 33-62. | MR | Zbl

[10] L. L. Avramov, Local rings over which all modules have rational Poincaré series, J. Pure Appl. Algebra 91 (1994), 29-48. | MR | Zbl

[11] L. L. Avramov, A. R. Kustin, M. Miller, Poincaré series of modules over local rings of small embedding codepth or small linking number, J. Algebra 118 (1988), 162-204. | MR | Zbl

[12] L. L. Avramov, L.-C. Sun, Cohomology operators defined by a deformation, J. Algebra, to appear. | Zbl

[13] D. J. Benson, J. F. Carlson, Projective resolutions and Poincaré duality complexes, Trans. Amer. Math. Soc. 342 (1994), 447-488. | MR | Zbl

[14] N. Bourbaki, Algèbre. III, Nouvelle édition, Paris, Hermann, 1970.

[15] N. Bourbaki, Algèbre commutative. IX, Paris, Masson, 1983.

[16] R.-O. Buchweitz, G.-M. Greuel, F. Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. math. 88 (1987), 165-182. | MR | Zbl

[17] J. A. Eagon, M. Hochster, R-sequences and indeterminates, Quart. J. Math. Oxford Ser. (2) 25 (1974), 61-71. | MR | Zbl

[18] D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), 35-64. | MR | Zbl

[19] D. Eisenbud, S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), 89-133. | MR | Zbl

[20] Y. Félix, S. Halperin, C. Jacobsson, C. Löfwall, J.-C. Thomas, The radical of the homotopy Lie algebra, Amer. J. Math., 110 (1988), 301-322. | MR | Zbl

[21] V. N. Gasharov, I. V. Peeva, Boundedness versus periodicity over commutative local rings, Trans. Amer. Math. Soc. 320 (1990), 569-580. | MR | Zbl

[22] A. Grothendieck, Éléments de géométrie algébrique. IV2, Publ. Math. IHES 24 (1965). | Numdam | Zbl

[23] T. H. Gulliksen, A change of rings theorem, with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167-183. | MR | Zbl

[24] T. H. Gulliksen, On the deviations of a local ring, Math. Scand. 47 (1980), 5-20. | MR | Zbl

[25] J. Herzog, B. Ulrich, J. Backelin, Linear maximal Cohen-Macaulay modules over strict complete intersections, J. Pure Appl. Algebra 71 (1991), 187-202. | MR | Zbl

[26] A. R. Kustin, S. M. Palmer, The Poincaré series of every finitely generated module over a codimension 4 almost complete intersection is a rational function, J. Pure Appl. Algebra 95 (1994), 271-295. | MR | Zbl

[27] S. Maclane, Homology, Grundlehren Math. Wiss., vol. 114, Springer, Berlin, 1963. | MR | Zbl

[28] Yu. I. Manin, Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier (Grenoble) 37 (1987), 191-205. | Numdam | MR | Zbl

[29] H. Matsumura, Commutative ring theory, Stud. Adv. Math., vol. 8, Cambridge, Univ. Press, 1986. | MR | Zbl

[30] V. B. Mehta, Endomorphisms of complexes and modules over Golod rings, Ph. D. Thesis, Univ. of California, Berkeley, 1976.

[31] J. W. Milnor, J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264. | MR | Zbl

[32] M. Nagata, Local rings, New York, Wiley, 1962. | MR | Zbl

[33] J. Shamash, The Poincaré series of a local rings, J. Algebra 12 (1969), 453-470. | MR | Zbl

[34] G. Sjödin, Hopf algebras and derivations, J. Algebra 64 (1980), 218-229. | MR | Zbl

[35] L.-C. Sun, Growth of Betti numbers over local rings of small embedding codepth or small linking number, J. Pure Appl. Algebra 96 (1994), 57-71. | MR | Zbl

[36] J. Tate, Homology of Noetherian rings and of local rings, Ill. J. Math. 1 (1957), 14-27. | MR | Zbl