@article{PMIHES_1990__71__173_0,
author = {Borel, Armand and Prasad, Gopal},
title = {Addendum : {Finiteness} theorems for discrete subgroups of bounded covolume in semi-simple groups},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {173--177},
year = {1990},
publisher = {Institut des Hautes Etudes Scientifiques},
volume = {71},
mrnumber = {1079647},
zbl = {0712.11026},
language = {en},
url = {https://www.numdam.org/item/PMIHES_1990__71__173_0/}
}
TY - JOUR AU - Borel, Armand AU - Prasad, Gopal TI - Addendum : Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups JO - Publications Mathématiques de l'IHÉS PY - 1990 SP - 173 EP - 177 VL - 71 PB - Institut des Hautes Etudes Scientifiques UR - https://www.numdam.org/item/PMIHES_1990__71__173_0/ LA - en ID - PMIHES_1990__71__173_0 ER -
%0 Journal Article %A Borel, Armand %A Prasad, Gopal %T Addendum : Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups %J Publications Mathématiques de l'IHÉS %D 1990 %P 173-177 %V 71 %I Institut des Hautes Etudes Scientifiques %U https://www.numdam.org/item/PMIHES_1990__71__173_0/ %G en %F PMIHES_1990__71__173_0
Borel, Armand; Prasad, Gopal. Addendum : Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups. Publications Mathématiques de l'IHÉS, Tome 71 (1990), pp. 173-177. https://www.numdam.org/item/PMIHES_1990__71__173_0/
[1] and , Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Publ. Math. I.H.E.S., 69 (1989), 119-171. | Zbl | MR | Numdam
[2] , Theorem of properness of Galois cohomology maps over function fields (in Russian), Dokl. Acad. Nauk BSSR, 23 (1979), 1065-1068. | Zbl | MR
[3] , Nombres de Tamagawa et groupes unipotents en caractéristique p, Invent. Math., 78 (1984), 13-88. | Zbl | MR
[4] , Volumes of S-arithmetic quotients of semi-simple groups, Publ. Math. I.H.E.S., 69 (1989), 91-117. | Zbl | MR | Numdam
[5] , Quadratic and hermitian forms, Springer-Verlag, Heidelberg (1985). | Zbl | MR






