Periodic points and rotation numbers for area preserving diffeomorphisms of the plane
Publications Mathématiques de l'IHÉS, Volume 71  (1990), p. 105-120
@article{PMIHES_1990__71__105_0,
     author = {Franks, John},
     title = {Periodic points and rotation numbers for area preserving diffeomorphisms of the plane},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     publisher = {Institut des Hautes \'Etudes Scientifiques},
     volume = {71},
     year = {1990},
     pages = {105-120},
     zbl = {0721.58031},
     mrnumber = {92b:58182},
     language = {en},
     url = {http://www.numdam.org/item/PMIHES_1990__71__105_0}
}
Franks, John. Periodic points and rotation numbers for area preserving diffeomorphisms of the plane. Publications Mathématiques de l'IHÉS, Volume 71 (1990) , pp. 105-120. http://www.numdam.org/item/PMIHES_1990__71__105_0/

[C] C. Conley, Iso ated Invariant Sets and the Morse index, C.B.M.S. Regional Conference Series in Math., 38 (1978), Amer. Math. Soc. Providence, R.I. | MR 80c:58009 | Zbl 0397.34056

[F1] J. Franks, Recurrence and Fixed Points of Surface Homeomorphisms, Ergodic Theory and Dyn. Systems, 8* (1988), 99-107. | MR 90d:58124 | Zbl 0634.58023

[F2] J. Franks, A Variation on the Poincaré-Birkhoff Theorem, "Hamiltonian Dynamics", Contemporary Math., Amer. Math. Soc., 81, 111-116. | MR 90e:58095 | Zbl 0679.58026

[Th] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc., 19 (1988), 417-431. | MR 89k:57023 | Zbl 0674.57008

[W] W. Wilson, Smoothing derivatives of functions and applications, Trans. Amer. Math. Soc., 139 (1969), 416-428. | MR 40 #4974 | Zbl 0175.20203