Persistence of stratifications of normally expanded laminations (2013)


Berger, Pierre
Mémoires de la Société Mathématique de France, Tome 134 (2013) 113 p
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
doi : 10.24033/msmf.444
URL stable : http://www.numdam.org/item?id=MSMF_2013_2_134__1_0

Bibliographie

[1] V. I. ArnolʼD, S. M. Guseĭn-Zade & A. N. VarchenkoSingularities of differentiable maps. Vol. I, Monographs in Mathematics, vol. 82, Birkhäuser Boston Inc., Boston, MA, 1985, The classification of critical points, caustics and wave fronts, Translated from the Russian by Ian Porteous and Mark Reynolds.

[2] K. Bekka« C-régularité et trivialité topologique », in Singularity theory and its applications, Part I (Coventry, 1988/1989), Lecture Notes in Math., vol. 1462, Springer, Berlin, 1991, p. 42–62. Zbl 0733.58003 | MR 1129023

[3] P. Berger« Persistence des stratifications de laminations normalement dilatées », PhD Thesis, Université Paris XI (2007).

[4] —, « Persistent bundles over a two dimensional compact set », ArXiv e-prints (2009).

[5] —, « Persistence of laminations », Bull Braz Math Soc, New series 41(2) (2010), p. 259–319. Zbl 1225.37037 | MR 2738914

[6] —, « Persistance des sous variétés à bord et à coins », Ann. Inst. Fourier 61(1) (2011), p. 79–104. Numdam | MR 2828127

[7] P. Berger & A. Rovella« On the inverse limit stability of endomorphisms », to appear in Ann. Inst. H. Poincaré (C) Non Linear Analysis; http://arxiv.org/abs/1006.4302. Numdam | Zbl 06295429 | MR 3061432

[8] C. Bonatti, L. J. Díaz & M. VianaDynamics beyond uniform hyperbolicity, Encyclopaedia of Mathematical Sciences, vol. 102, Springer-Verlag, Berlin, 2005, A global geometric and probabilistic perspective, Mathematical Physics, III. Zbl 1060.37020 | MR 2105774

[9] J. Buzzi, O. Sester & M. Tsujii« Weakly expanding skew-products of quadratic maps », Ergodic Theory Dynam. Systems 23 (2003), no. 5, p. 1401–1414. Zbl 1037.37014 | MR 2018605

[10] J. Cerf« Topologie de certains espaces de plongements », Bull. Soc. Math. France 89 (1961), p. 227–380. Numdam | Zbl 0101.16001 | | MR 140120

[11] A. Douady« Variétés à bord anguleux et voisinages tubulaires », in Séminaire Henri Cartan, 1961/62, Exp. 1, Secrétariat mathématique, Paris, 1961/1962, p. 11. Numdam | Zbl 0116.40304 | | MR 160221

[12] É. Ghys« Laminations par surfaces de Riemann », in Dynamique et géométrie complexes (Lyon, 1997), Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, p. ix, xi, 49–95. Zbl 1018.37028

[13] N. Gourmelon« Adapted metrics for dominated splittings », Ergodic Theory Dynam. Systems 27 (2007), no. 6, p. 1839–1849. Zbl 1127.37031 | MR 2371598

[14] J. Graczyk & G. ŚwiątekThe real Fatou conjecture, Annals of Mathematics Studies, vol. 144, Princeton University Press, Princeton, NJ, 1998. Zbl 0910.30001 | MR 1657075

[15] M. W. Hirsch, C. C. Pugh & M. ShubInvariant manifolds, Springer-Verlag, Berlin, 1977, Lecture Notes in Mathematics, Vol. 583. Zbl 0355.58009 | MR 501173

[16] M. W. HirschDifferential topology, Springer-Verlag, New York, 1976, Graduate Texts in Mathematics, No. 33. Zbl 0356.57001 | MR 448362

[17] H. Karcher« Riemannian center of mass and mollifier smoothing », Comm. Pure Appl. Math. 30 (1977), no. 5, p. 509–541. Zbl 0354.57005 | MR 442975

[18] M. Lyubich« Dynamics of quadratic polynomials. I, II », Acta Math. 178 (1997), no. 2, p. 185–247, 247–297. Zbl 0908.58053 | MR 1459261

[19] R. Mañé« Persistent manifolds are normally hyperbolic », Trans. Amer. Math. Soc. 246 (1978), p. 261–283. Zbl 0362.58014 | MR 515539

[20] —, « A proof of the C 1 stability conjecture », Inst. Hautes Études Sci. Publ. Math. (1988), no. 66, p. 161–210. Numdam | Zbl 0678.58022

[21] J. N. Mather« Stratifications and mappings », in Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, p. 195–232. MR 368064

[22] W. De Melo« Structural stability of diffeomorphisms on two-manifolds », Invent. Math. 21 (1973), p. 233–246. Zbl 0291.58011 | | MR 339277

[23] P. W. MichorManifolds of differentiable mappings, Shiva Mathematics Series, vol. 3, Shiva Publishing Ltd., Nantwich, 1980. Zbl 0433.58001 | MR 583436

[24] J. MilnorDynamics in one complex variable, third éd., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309

[25] C. Murolo & D. Trotman« Semidifférentiabilité et version lisse de la conjecture de fibration de whitney », Advanced Studies in Pure Mathematics (2006), no. 43, p. 271–309. Zbl 1128.58006 | MR 2325142

[26] J. Palis & S. Smale« Structural stability theorems », in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, p. 223–231. Zbl 0214.50702 | MR 267603

[27] J. Robbin« A structural stability theorem », Ann. of Math. (2) 94 (1971), p. 447–493. Zbl 0224.58005 | MR 287580

[28] C. Robinson« Structural stability of C 1 diffeomorphisms », J. Differential Equations 22 (1976), no. 1, p. 28–73. Zbl 0343.58009 | MR 474411

[29] F. Rodriguez Hertz, M. A. Rodriguez Hertz & R. Ures« A survey of partially hyperbolic dynamics », in Partially hyperbolic dynamics, laminations, and Teichmüller flow, Fields Inst. Commun., vol. 51, Amer. Math. Soc., Providence, RI, 2007, p. 35–87. Zbl 1149.37021 | MR 2388690

[30] M. Shub« Endomorphisms of compact differentiable manifolds », Amer. J. Math. 91 (1969), p. 175–199. Zbl 0201.56305 | MR 240824

[31] —, Stabilité globale des systèmes dynamiques, Astérisque, vol. 56, Société Mathématique de France, Paris, 1978, With an English preface and summary. Zbl 0396.58014

[32] S. Smale« Differentiable dynamical systems », Bull. Amer. Math. Soc. 73 (1967), p. 747–817. Zbl 0202.55202 | MR 228014

[33] R. Thom« Local topological properties of differentiable mappings », in Differential Analysis, Bombay Colloq., Oxford Univ. Press, London, 1964, p. 191–202. MR 195102

[34] D. J. A. Trotman« Geometric versions of Whitney regularity for smooth stratifications », Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, p. 453–463. Numdam | Zbl 0456.58002 | | MR 565466

[35] M. Viana« Multidimensional nonhyperbolic attractors », Inst. Hautes Études Sci. Publ. Math. (1997), no. 85, p. 63–96. Zbl 1037.37016 | | MR 1471866

[36] H. Whitney« Local properties of analytic varieties », in Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J., 1965, p. 205–244. Zbl 0129.39402 | MR 188486

[37] —, « Tangents to an analytic variety », Ann. of Math. (2) 81 (1965), p. 496–549. Zbl 0152.27701 | MR 192520

[38] J.-C. Yoccoz« Introduction to hyperbolic dynamics », in Real and complex dynamical systems (Hillerød, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 464, Kluwer Acad. Publ., Dordrecht, 1995, p. 265–291. Zbl 0834.54023 | MR 1351526